Spectroscopic and Thermal Analyses of Ortho-Benzylphenol Crystalline Polymorphism

  • J. Baran Institute of Low Temperature and Structure Research, PAS
  • N. A. Davydova Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. Drozd Institute of Low Temperature and Structure Research, PAS
  • E. A. Ponezha Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. Ya. Reznichenko Institute of Physics, Nat. Acad. of Sci. of Ukraine

Abstract

In situ, we present the experimental spectroscopic proof of the existence of polymorphism in ortho-benzylphenol. Infrared spectroscopy was used for the first time to investigate the structural changes during the crystallization of a metastable phase, which is transformed, in the course of time, into a stable one. The results show that, in the stable and metastable phases, different conformers of ortho-benzylphenol molecule predominate, which differ in the orientation of the aromatic rings relative to the connecting methylene bridge. Namely, it is shown that the transformation of the metastable phase into a stable one is accompanied by the rotation of the OH-substituted aromatic ring relative to the connecting methylene bridge from 59.9∘ to 180.0∘ in the molecule of ortho-benzylphenol. The DSC experiment has shown that the process of nucleation of a metastable phase preferentially develops below ∼1.1 Tg (243 K), the crystallization occurs at ∼272 K, and the melting happens at 290.2 K. The difference in the temperature regions of nucleation and crystallization explains a good glass-forming status of ortho-benzylphenol.

Keywords infrared spectroscopy, conformers, ortho-benzylphenol

References


  1. S. Katsyuba, A. Chernova, R. Schmutzler. Vibrational spectra and conformational isomerism of calixarene building blocks: 2-benzylphenol. Org. Biomol. Chem. 1, 714 (2003).
    https://doi.org/10.1039/b211164k

  2. J.C. Bryan, L.H. Delmau, J.B. Nicholas, L.M. Rogers, R.D. Rogers, B.A. Moyer. Cesium recognition by supramolecular assemblies of 2-benzylphenol and 2-benzylphenolate. Struct. Chem. 10, 187 (1999).
    https://doi.org/10.1023/A:1021884429538

  3. L. McMaster, W.M. Bruner. Benzylation of phenol. Ind. Eng. Chem. 28, 505 (1936).
    https://doi.org/10.1021/ie50316a036

  4. J.J. Moura Ramos, S. Rocha, H.P. Diogo. Polymorphic forms of o-benzylphenol and slow molecular motions in the amorphous state. J. Non-Cryst. Solids 344, 119 (2004).
    https://doi.org/10.1016/j.jnoncrysol.2004.07.061

  5. F. Paladi, M. Oguni. Anomalous generation and extinction of crystal nuclei in nonequilibrium supercooled liquid o-ben-zylphenol. Phys. Rev. B 65, 144202 (2002).
    https://doi.org/10.1103/PhysRevB.65.144202

  6. J. Baran, N.A. Davydova, M. Drozd, A. Pietraszko. Experimental evidence of formation of a new phase in supercooled liquid 2-biphenylmethanol. J. Phys.: Condens. Matter 18, 5695 (2006).
    https://doi.org/10.1088/0953-8984/18/24/010

  7. J. Baran, N.A. Davydova, M. Drozd. The role of nucleation in vitrification of supercooled liquids. J. Phys.: Condens. Matter 22, 155108 (2010).
    https://doi.org/10.1088/0953-8984/22/15/155108

  8. J. Baran, N.A. Davydova, M. Drozd. Discovery of a new polymorphic phase of ortho-bromobenzophenone. Chem. Phys. Lett. 621, 18 (2015).
    https://doi.org/10.1016/j.cplett.2014.12.041

  9. V.N. Novikov, A.P. Sokolov. Universality of the dynamic crossover in glass-forming liquids: A "magic" relaxation time. Phys. Rev. E 67, 031507 (2003).
    https://doi.org/10.1103/PhysRevE.67.031507
Published
2018-03-02
How to Cite
Baran, J., Davydova, N., Drozd, M., Ponezha, E., & Reznichenko, V. (2018). Spectroscopic and Thermal Analyses of Ortho-Benzylphenol Crystalline Polymorphism. Ukrainian Journal Of Physics, 63(2), 95. doi:10.15407/ujpe63.2.95
Section
Optics, atoms and molecules