Optical Properties and Stability of Bilayer Rubrene-Alq3 Films Fabricated by Vacuum Deposition
DOI:
https://doi.org/10.15407/ujpe63.4.362Keywords:
rubrene, Alq3, oxidized rubrene, vacuum deposition, thin films, FTIR spectra, photoluminescenceAbstract
We report on the optical and structural characterization of the two-component vacuum deposited (VD) rubrene (Rub)-Alq3 films. As is known, Rub-doped OLED active materials demonstrate both promising electroluminescence and transistor characteristics. However, in terms of operational lifetime, the Rub practical application in basic devices has a few draw-backs related to its chemical instability. Our main attention was focused on the role of the Alq3 coverage and the isomeric transformation of a Rub molecule on its chemical stability in these structures. By monitoring the evolution of PL emission in time, we found that the Rub degradation in Rub-Alq3 films is slower than that in vacuum-deposited Rub layers. These results demonstrate that the deposition of an Alq3 layer can be a way to enhance the stability of Rub to the photo-oxidation in optoelectronic devices. The Rub amorphous film crystallization at elevated temperatures in open air was observed for the first time.
References
<li>H. Aziz, Z.D. Popovic, N.-X. Hu, Ah-Mee Hor, Gu Xu. Degradation mechanism of small molecule-based organic light-emitting devices. Science 283, 1900 (1999).
<a href="https://doi.org/10.1126/science.283.5409.1900">https://doi.org/10.1126/science.283.5409.1900</a>
</li>
<li>S. Scholz, D. Kondakov, B. L?ussem, K. Leo. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, (16) 8449 (2015).
<a href="https://doi.org/10.1021/cr400704v">https://doi.org/10.1021/cr400704v</a>
</li>
<li>M.J. Jurow, A. Bossi, P.I. Djurovich, M.E. Thompson. In situ observation of degradation by ligand substitution in small-molecule phosphorescent organic light-emitting diodes. Chem. Mater. 26 (22), 6578 (2014).
<a href="https://doi.org/10.1021/cm503336d">https://doi.org/10.1021/cm503336d</a>
</li>
<li>Z.D. Popovic, S. Xie, N. Hu, A. Hor, D. Fork, G. Anderson, C. Tripp. Life extension of organic LED's by doping of a hole transport layer. Thin Solid Films 1-2, 363 6-8 (2000).
</li>
<li>Y. Hamada, T. Sano, K. Shibata, K. Kuroki. Influence of the emission site on the running durability of organic electroluminescent device. Jpn. J. Appl. Phys. 34, L824 (1995).
<a href="https://doi.org/10.1143/JJAP.34.L824">https://doi.org/10.1143/JJAP.34.L824</a>
</li>
<li>S.A. Van Slyke, C.H. Chen, C.W. Tang. Organic electro-luminescent devices with improved stability. Appl. Phys. Lett. 69, 2160 (1996).
<a href="https://doi.org/10.1063/1.117151">https://doi.org/10.1063/1.117151</a>
</li>
<li>M.M. Shi, J.J. Lin, Y.W. Shi, M. Ouyang, M. Wang, H.Z. Chen. Achieving blue luminescence of Alq3 through the pull-push effect of the electron-withdrawing and electron-donating substituents. Mater. Chem. Phys. 115, 841 (2009).
<a href="https://doi.org/10.1016/j.matchemphys.2009.02.046">https://doi.org/10.1016/j.matchemphys.2009.02.046</a>
</li>
<li>V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644 (2004).
<a href="https://doi.org/10.1126/science.1094196">https://doi.org/10.1126/science.1094196</a>
</li>
<li>Z. Zhang, X. Jiang, S. Xu, T. Nagamoti, O. Omoto. The effect of rubrene as a dopant on the efficiency and stability of organic thin film electroluminescent devices. J. Phys. D 31, 32 (1998).
<a href="https://doi.org/10.1088/0022-3727/31/1/005">https://doi.org/10.1088/0022-3727/31/1/005</a>
</li>
<li> Y. Sakurai, Y. Hosoi, H. Ishii, Y. Ouchi. Study of the interaction of tris-(8-hydroxyquinoline) aluminum (Alq3) with potassium using vibrational spectroscopy: Examination of possible isomerization upon K doping. J. Appl. Phys. 96 (10), 5534 (2004).
<a href="https://doi.org/10.1063/1.1776626">https://doi.org/10.1063/1.1776626</a>
</li>
<li> D. K?afer, L. Ruppel, G. Witter, C. W?oll. Role of molecular conformations in rubrene thin film growth. Phys. Rev. Lett. 95, 166602 (2005).
<a href="https://doi.org/10.1103/PhysRevLett.95.166602">https://doi.org/10.1103/PhysRevLett.95.166602</a>
</li>
<li> J. A. Miwa, F. Cicoira, S. Bedwani, J. Lipton-Duffin, D.F. Perepichka, A. Rochefort, F. Rosei. Self-assembly of rubrene on copper surfaces. J. Phys. Chem. C 112, 10214 (2008).
<a href="https://doi.org/10.1021/jp802762q">https://doi.org/10.1021/jp802762q</a>
</li>
<li> S.F. Nelson, Y.-Y. Lin, D.J. Gundlach, T.N. Jackson. Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854 (1998).
<a href="https://doi.org/10.1063/1.121205">https://doi.org/10.1063/1.121205</a>
</li>
<li> R.J. Chesterfield, J.C. McKeen, C.R. Newman et al. Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors. J. Appl. Phys. 95, 6396 (2004).
<a href="https://doi.org/10.1063/1.1710729">https://doi.org/10.1063/1.1710729</a>
</li>
<li> S.R. Forrest. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).
<a href="https://doi.org/10.1038/nature02498">https://doi.org/10.1038/nature02498</a>
</li>
<li> R. Fedorovych, T. Gavrilko, Ya. Lopatina, A. Marchenko, V. Nechytaylo, A. Senenko, L. Viduta, J. Baran. Structure, morphology, and photoluminescence of vacuum deposited rubrene thin layers. Ukr. J. Phys. 61 (6), 547 (2016).
<a href="https://doi.org/10.15407/ujpe61.06.0547">https://doi.org/10.15407/ujpe61.06.0547</a>
</li>
<li> T. Gavrilko, R. Fedorovich, G. Dovbeshko, A. Marchenko, A. Naumovets, V. Nechytaylo, G. Puchkovska, L. Viduta, J. Baran, H. Ratajczak. FTIR spectroscopic and STM studies of vacuum deposited aluminium (III) 8-hydroxy-quinoline thin films. J. Molec. Struct. 704, 163 (2004).
<a href="https://doi.org/10.1016/j.molstruc.2004.01.068">https://doi.org/10.1016/j.molstruc.2004.01.068</a>
</li>
<li> G.P. Kushto, Y. Iizumi, J. Kido, Z.H. Kafafi. A matrix-isolation spectroscopic and theoretical investigation of tris (8-hydroxyquinolinato)aluminum(III) and Tris(4-methyl-8-hydroxyquinolinato)aluminum(III). J. Phys. Chem. A 104, 3670 (2000).
<a href="https://doi.org/10.1021/jp993883t">https://doi.org/10.1021/jp993883t</a>
</li>
<li> M.D. Halls, R. Aroca. Vibrational spectra and structure of tris (8-hydroxyquinoline) aluminum (III). Can. J. Chem. 76, 1730 (1998).
</li>
<li> D. Esposti, M. Brinkmann, G. Ruani. The dynamics of the internal phonons tris(quinolin-8-olato) aluminum(III) in crystalline B-phase. J. Chem. Phys. 116, 798 (2002).
<a href="https://doi.org/10.1063/1.1423661">https://doi.org/10.1063/1.1423661</a>
</li>
<li> M. Kytka, L. Gisslen, A. Gerlach, U. Heinemeyer, J. Kov’a?c, R. Scholz, F. Schreiber. Optical spectra obtained from amorphous films of rubrene: Evidence for predominance of twisted isomer. J. Chem. Phys. 130, 214507 (2009).
<a href="https://doi.org/10.1063/1.3147009">https://doi.org/10.1063/1.3147009</a>
</li>
<li> D K?afer, G. Witte. Growth of crystalline rubrene films with enhanced stability. Phys. Chem. Chem. Phys. 7, 2850 (2005).
<a href="https://doi.org/10.1039/b507620j">https://doi.org/10.1039/b507620j</a>
</li>
<li> C. Kloc, K.J. Tan, M.L. Toh, K.K. Zhang, Y.P. Xu, Purity of rubrene single crystals. Applied Physics A: Materials Science and Processing 95, 219 (2009).
<a href="https://doi.org/10.1007/s00339-008-5014-0">https://doi.org/10.1007/s00339-008-5014-0</a>
</li>
<li> L.J. Bellamy. The Infrared Spectra of Complex Molecules, Vol. 1 (Springer, 1975).
<a href="https://doi.org/10.1007/978-94-011-6017-9">https://doi.org/10.1007/978-94-011-6017-9</a>
</li>
<li> H. Najafov, D. Mastrogiovanni, E. Garfunkel, L.C. Feldman, V. Podzorov. Photon-assisted oxygen diffusion and oxygen-related traps in organic semiconductors. Adv. Mater. 23, 981 (2011).
<a href="https://doi.org/10.1002/adma.201004239">https://doi.org/10.1002/adma.201004239</a>
</li>
<li> K.K. Zhang, K. Tan, C. Zou, M. Wikberg, L.E. McNeil, S.G. Mhaisalkar, C. Kloc. Control of charge mobility in single-crystal rubrene through surface chemistry. Organic Electronics 11, 1928 (2010).
<a href="https://doi.org/10.1016/j.orgel.2010.08.019">https://doi.org/10.1016/j.orgel.2010.08.019</a>
</li>
<li> S. Uttiya, L. Raimondo, M. Campione et al. Stability to photo-oxidation of rubrene and fluorine-substituted rubrene. Synthetic Metals 161, 2603 (2012).
<a href="https://doi.org/10.1016/j.synthmet.2011.08.006">https://doi.org/10.1016/j.synthmet.2011.08.006</a>
</li>
<li> M.D. Halls, C.P. Tripp, H.B. Schlegel. Structure and infrared (IR) assignments for the OLED material: N,N?-diphenyl-N, N?-bis (1-naphthyl)-1, 1?-biphenyl-4, 4??-diamine (NPB). Phys. Chem. Chem. Phys. 3, 2131 (2001).
<a href="https://doi.org/10.1039/b101619i">https://doi.org/10.1039/b101619i</a>
</li>
<li> E. Fumagalli, L. Raimondo, L. Silvestri, M. Moret, A. Sassella, M. Campione. Oxidation Dynamics of epitaxial rubrene ultrathin films. Chem. Mater. 23, 3246 (2011).
<a href="https://doi.org/10.1021/cm201230j">https://doi.org/10.1021/cm201230j</a>
</li>
<li> A.J. Maliakal, J.Y.C. Chen, W.-Y. So, S. Jockusch, B. Kim, M.F. Ottaviani, A. Modelli, N.J. Turro, C. Nuckolls, A.P. Ramirez. Mechanism for oxygen enhanced photo-conductivity in rubrene: Electron transfer doping. Chem. Mater. 21, 5519 (2009).
<a href="https://doi.org/10.1021/cm902699s">https://doi.org/10.1021/cm902699s</a>
</li>
<li> L. Ma, K. Zhang, C. Kloc, H. Sun, C. Soci, M.E. Michel-Beyerle, G.G. Gurzadyan. Fluorescence from rubrene single crystals: Interplay of singlet fission and energy trapping. Phys. Rev. B 87, 201203(R) (2013).
</li>
<li> K.Y. Lin, Y.J. Wang, K.L. Chen, C.Y. Ho, C.C. Yang, J.L. Shen, K.C. Chiu. Role of molecular conformations in rubrene polycrystalline films grown from vacuum deposition at various substrate temperatures. Scientific Reports 7, 40824 (2017).
<a href="https://doi.org/10.1038/srep40824">https://doi.org/10.1038/srep40824</a>
</li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.