Optical Properties and Stability of Bilayer Rubrene-Alq3 Films Fabricated by Vacuum Deposition

Authors

  • T. Gavrilko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Nechytaylo Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • L. Viduta Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • J. Baran Institute of Low Temperatures and Structure Research, PAN

DOI:

https://doi.org/10.15407/ujpe63.4.362

Keywords:

rubrene, Alq3, oxidized rubrene, vacuum deposition, thin films, FTIR spectra, photoluminescence

Abstract

We report on the optical and structural characterization of the two-component vacuum deposited (VD) rubrene (Rub)-Alq3 films. As is known, Rub-doped OLED active materials demonstrate both promising electroluminescence and transistor characteristics. However, in terms of operational lifetime, the Rub practical application in basic devices has a few draw-backs related to its chemical instability. Our main attention was focused on the role of the Alq3 coverage and the isomeric transformation of a Rub molecule on its chemical stability in these structures. By monitoring the evolution of PL emission in time, we found that the Rub degradation in Rub-Alq3 films is slower than that in vacuum-deposited Rub layers. These results demonstrate that the deposition of an Alq3 layer can be a way to enhance the stability of Rub to the photo-oxidation in optoelectronic devices. The Rub amorphous film crystallization at elevated temperatures in open air was observed for the first time.

References

<ol>
<li>H. Aziz, Z.D. Popovic, N.-X. Hu, Ah-Mee Hor, Gu Xu. Degradation mechanism of small molecule-based organic light-emitting devices. Science 283, 1900 (1999).
<a href="https://doi.org/10.1126/science.283.5409.1900">https://doi.org/10.1126/science.283.5409.1900</a>
</li>
<li>S. Scholz, D. Kondakov, B. L?ussem, K. Leo. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, (16) 8449 (2015).
<a href="https://doi.org/10.1021/cr400704v">https://doi.org/10.1021/cr400704v</a>
</li>
<li>M.J. Jurow, A. Bossi, P.I. Djurovich, M.E. Thompson. In situ observation of degradation by ligand substitution in small-molecule phosphorescent organic light-emitting diodes. Chem. Mater. 26 (22), 6578 (2014).
<a href="https://doi.org/10.1021/cm503336d">https://doi.org/10.1021/cm503336d</a>
</li>
<li>Z.D. Popovic, S. Xie, N. Hu, A. Hor, D. Fork, G. Anderson, C. Tripp. Life extension of organic LED's by doping of a hole transport layer. Thin Solid Films 1-2, 363 6-8 (2000).
</li>
<li>Y. Hamada, T. Sano, K. Shibata, K. Kuroki. Influence of the emission site on the running durability of organic electroluminescent device. Jpn. J. Appl. Phys. 34, L824 (1995).
<a href="https://doi.org/10.1143/JJAP.34.L824">https://doi.org/10.1143/JJAP.34.L824</a>
</li>
<li>S.A. Van Slyke, C.H. Chen, C.W. Tang. Organic electro-luminescent devices with improved stability. Appl. Phys. Lett. 69, 2160 (1996).
<a href="https://doi.org/10.1063/1.117151">https://doi.org/10.1063/1.117151</a>
</li>
<li>M.M. Shi, J.J. Lin, Y.W. Shi, M. Ouyang, M. Wang, H.Z. Chen. Achieving blue luminescence of Alq3 through the pull-push effect of the electron-withdrawing and electron-donating substituents. Mater. Chem. Phys. 115, 841 (2009).
<a href="https://doi.org/10.1016/j.matchemphys.2009.02.046">https://doi.org/10.1016/j.matchemphys.2009.02.046</a>
</li>
<li>V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644 (2004).
<a href="https://doi.org/10.1126/science.1094196">https://doi.org/10.1126/science.1094196</a>
</li>
<li>Z. Zhang, X. Jiang, S. Xu, T. Nagamoti, O. Omoto. The effect of rubrene as a dopant on the efficiency and stability of organic thin film electroluminescent devices. J. Phys. D 31, 32 (1998).
<a href="https://doi.org/10.1088/0022-3727/31/1/005">https://doi.org/10.1088/0022-3727/31/1/005</a>
</li>
<li> Y. Sakurai, Y. Hosoi, H. Ishii, Y. Ouchi. Study of the interaction of tris-(8-hydroxyquinoline) aluminum (Alq3) with potassium using vibrational spectroscopy: Examination of possible isomerization upon K doping. J. Appl. Phys. 96 (10), 5534 (2004).
<a href="https://doi.org/10.1063/1.1776626">https://doi.org/10.1063/1.1776626</a>
</li>
<li> D. K?afer, L. Ruppel, G. Witter, C. W?oll. Role of molecular conformations in rubrene thin film growth. Phys. Rev. Lett. 95, 166602 (2005).
<a href="https://doi.org/10.1103/PhysRevLett.95.166602">https://doi.org/10.1103/PhysRevLett.95.166602</a>
</li>
<li> J. A. Miwa, F. Cicoira, S. Bedwani, J. Lipton-Duffin, D.F. Perepichka, A. Rochefort, F. Rosei. Self-assembly of rubrene on copper surfaces. J. Phys. Chem. C 112, 10214 (2008).
<a href="https://doi.org/10.1021/jp802762q">https://doi.org/10.1021/jp802762q</a>
</li>
<li> S.F. Nelson, Y.-Y. Lin, D.J. Gundlach, T.N. Jackson. Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854 (1998).
<a href="https://doi.org/10.1063/1.121205">https://doi.org/10.1063/1.121205</a>
</li>
<li> R.J. Chesterfield, J.C. McKeen, C.R. Newman et al. Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors. J. Appl. Phys. 95, 6396 (2004).
<a href="https://doi.org/10.1063/1.1710729">https://doi.org/10.1063/1.1710729</a>
</li>
<li> S.R. Forrest. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).
<a href="https://doi.org/10.1038/nature02498">https://doi.org/10.1038/nature02498</a>
</li>
<li> R. Fedorovych, T. Gavrilko, Ya. Lopatina, A. Marchenko, V. Nechytaylo, A. Senenko, L. Viduta, J. Baran. Structure, morphology, and photoluminescence of vacuum deposited rubrene thin layers. Ukr. J. Phys. 61 (6), 547 (2016).
<a href="https://doi.org/10.15407/ujpe61.06.0547">https://doi.org/10.15407/ujpe61.06.0547</a>
</li>
<li> T. Gavrilko, R. Fedorovich, G. Dovbeshko, A. Marchenko, A. Naumovets, V. Nechytaylo, G. Puchkovska, L. Viduta, J. Baran, H. Ratajczak. FTIR spectroscopic and STM studies of vacuum deposited aluminium (III) 8-hydroxy-quinoline thin films. J. Molec. Struct. 704, 163 (2004).
<a href="https://doi.org/10.1016/j.molstruc.2004.01.068">https://doi.org/10.1016/j.molstruc.2004.01.068</a>
</li>
<li> G.P. Kushto, Y. Iizumi, J. Kido, Z.H. Kafafi. A matrix-isolation spectroscopic and theoretical investigation of tris (8-hydroxyquinolinato)aluminum(III) and Tris(4-methyl-8-hydroxyquinolinato)aluminum(III). J. Phys. Chem. A 104, 3670 (2000).
<a href="https://doi.org/10.1021/jp993883t">https://doi.org/10.1021/jp993883t</a>
</li>
<li> M.D. Halls, R. Aroca. Vibrational spectra and structure of tris (8-hydroxyquinoline) aluminum (III). Can. J. Chem. 76, 1730 (1998).
</li>
<li> D. Esposti, M. Brinkmann, G. Ruani. The dynamics of the internal phonons tris(quinolin-8-olato) aluminum(III) in crystalline B-phase. J. Chem. Phys. 116, 798 (2002).
<a href="https://doi.org/10.1063/1.1423661">https://doi.org/10.1063/1.1423661</a>
</li>
<li> M. Kytka, L. Gisslen, A. Gerlach, U. Heinemeyer, J. Kov’a?c, R. Scholz, F. Schreiber. Optical spectra obtained from amorphous films of rubrene: Evidence for predominance of twisted isomer. J. Chem. Phys. 130, 214507 (2009).
<a href="https://doi.org/10.1063/1.3147009">https://doi.org/10.1063/1.3147009</a>
</li>
<li> D K?afer, G. Witte. Growth of crystalline rubrene films with enhanced stability. Phys. Chem. Chem. Phys. 7, 2850 (2005).
<a href="https://doi.org/10.1039/b507620j">https://doi.org/10.1039/b507620j</a>
</li>
<li> C. Kloc, K.J. Tan, M.L. Toh, K.K. Zhang, Y.P. Xu, Purity of rubrene single crystals. Applied Physics A: Materials Science and Processing 95, 219 (2009).
<a href="https://doi.org/10.1007/s00339-008-5014-0">https://doi.org/10.1007/s00339-008-5014-0</a>
</li>
<li> L.J. Bellamy. The Infrared Spectra of Complex Molecules, Vol. 1 (Springer, 1975).
<a href="https://doi.org/10.1007/978-94-011-6017-9">https://doi.org/10.1007/978-94-011-6017-9</a>
</li>
<li> H. Najafov, D. Mastrogiovanni, E. Garfunkel, L.C. Feldman, V. Podzorov. Photon-assisted oxygen diffusion and oxygen-related traps in organic semiconductors. Adv. Mater. 23, 981 (2011).
<a href="https://doi.org/10.1002/adma.201004239">https://doi.org/10.1002/adma.201004239</a>
</li>
<li> K.K. Zhang, K. Tan, C. Zou, M. Wikberg, L.E. McNeil, S.G. Mhaisalkar, C. Kloc. Control of charge mobility in single-crystal rubrene through surface chemistry. Organic Electronics 11, 1928 (2010).
<a href="https://doi.org/10.1016/j.orgel.2010.08.019">https://doi.org/10.1016/j.orgel.2010.08.019</a>
</li>
<li> S. Uttiya, L. Raimondo, M. Campione et al. Stability to photo-oxidation of rubrene and fluorine-substituted rubrene. Synthetic Metals 161, 2603 (2012).
<a href="https://doi.org/10.1016/j.synthmet.2011.08.006">https://doi.org/10.1016/j.synthmet.2011.08.006</a>
</li>
<li> M.D. Halls, C.P. Tripp, H.B. Schlegel. Structure and infrared (IR) assignments for the OLED material: N,N?-diphenyl-N, N?-bis (1-naphthyl)-1, 1?-biphenyl-4, 4??-diamine (NPB). Phys. Chem. Chem. Phys. 3, 2131 (2001).
<a href="https://doi.org/10.1039/b101619i">https://doi.org/10.1039/b101619i</a>
</li>
<li> E. Fumagalli, L. Raimondo, L. Silvestri, M. Moret, A. Sassella, M. Campione. Oxidation Dynamics of epitaxial rubrene ultrathin films. Chem. Mater. 23, 3246 (2011).
<a href="https://doi.org/10.1021/cm201230j">https://doi.org/10.1021/cm201230j</a>
</li>
<li> A.J. Maliakal, J.Y.C. Chen, W.-Y. So, S. Jockusch, B. Kim, M.F. Ottaviani, A. Modelli, N.J. Turro, C. Nuckolls, A.P. Ramirez. Mechanism for oxygen enhanced photo-conductivity in rubrene: Electron transfer doping. Chem. Mater. 21, 5519 (2009).
<a href="https://doi.org/10.1021/cm902699s">https://doi.org/10.1021/cm902699s</a>
</li>
<li> L. Ma, K. Zhang, C. Kloc, H. Sun, C. Soci, M.E. Michel-Beyerle, G.G. Gurzadyan. Fluorescence from rubrene single crystals: Interplay of singlet fission and energy trapping. Phys. Rev. B 87, 201203(R) (2013).
</li>
<li> K.Y. Lin, Y.J. Wang, K.L. Chen, C.Y. Ho, C.C. Yang, J.L. Shen, K.C. Chiu. Role of molecular conformations in rubrene polycrystalline films grown from vacuum deposition at various substrate temperatures. Scientific Reports 7, 40824 (2017).
<a href="https://doi.org/10.1038/srep40824">https://doi.org/10.1038/srep40824</a>
</li></ol>

Downloads

Published

2018-06-18

How to Cite

Gavrilko, T., Nechytaylo, V., Viduta, L., & Baran, J. (2018). Optical Properties and Stability of Bilayer Rubrene-Alq3 Films Fabricated by Vacuum Deposition. Ukrainian Journal of Physics, 63(4), 362. https://doi.org/10.15407/ujpe63.4.362

Issue

Section

Surface physics

Most read articles by the same author(s)