Nature of the Dynamic Crossover in Orthoterphenyl

  • J. Baran Institute of Low Temperature and Structure Research, PAS
  • N. A. Davydova Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. Drozd Institute of Low Temperature and Structure Research, PAS
  • E. A. Ponezha Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. Ya. Reznichenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: differential scanning calorimetry, infrared spectroscopy, glass transition, nucleation, orthoterphenyl, supercooled liquids

Abstract

We have conducted the infrared spectroscopic study and differential scanning calorimetry measurements (DSC) on orthoterphenyl (OTP), aiming to explore the physical nature of the dynamic crossover at 1.2Tg found in variety experiments on OTP. We have obtained that, at T ≤ 1.2Tg (∼290 K) in the supercooled liquid OTP, the crystal nuclei appear and are absent at higher temperatures. These results suggest that the origin of the dynamic crossover at 1.2Tg is related to the formation of fluctuating nuclei in the supercooled liquid, as a temperature of 1.2Tg is approached. Therefore, we would expect that the appearance of the nuclei would change the molecular dynamics from individual to cooperative.

References

E.W. Fischer, Physica A 201, 183 (1993).

https://doi.org/10.1016/0378-4371(93)90416-2

H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).

https://doi.org/10.1016/S0022-3093(98)00831-X

M.D. Ediger, J. Non-Cryst. Solids 235-237, 10 (1998).

https://doi.org/10.1016/S0022-3093(98)00557-2

R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).

https://doi.org/10.1088/0953-8984/14/23/201

G.P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970).

https://doi.org/10.1063/1.1674335

R.J. Greet and D. Turnbull, J. Chem. Phys. 46, 1243 (1967).

https://doi.org/10.1063/1.1840842

F.H. Stilinger, J. Phys. Chem. 89, 6461 (1988).

https://doi.org/10.1063/1.455365

C.A. Angel, K.L. Ngai, G.B. McKenna, P.F. McMillan, and S.W. Martin, J. Appl. Phys. 88, 3113 (2000).

https://doi.org/10.1063/1.1286035

C.A. Angel, J. Non-Cryst. Solids 354, 4703-4712 (2008).

https://doi.org/10.1016/j.jnoncrysol.2008.05.054

E. Donth, J. Non-Cryst. Solids 53, 325 (1982).

https://doi.org/10.1016/0022-3093(82)90089-8

M.D. Ediger, C.A. Angel, and S.R. Nagel, J. Chem. Phys. 100, 13200 (1996).

https://doi.org/10.1021/jp953538d

N.V. Surovtsev, S.V. Adichtchev, and V.K. Malinovsky, Phys. Rev. E 76, 021502 (2007).

https://doi.org/10.1103/PhysRevE.76.021502

V.A. Popova, A.M. Pugachev, and N.V. Surovtsev, Phys. Rev. E 82, 011503 (2010).

https://doi.org/10.1103/PhysRevE.82.011503

N.V. Surovtsev, J. Phys.: Condens. Matter 19, 196101 (2007).

https://doi.org/10.1088/0953-8984/19/19/196101

A.M. Brodin and E.A. Rossler, J. Phys.: Condens. Matter. 18, 8481 (2006).

https://doi.org/10.1088/0953-8984/18/37/007

V.N. Novikov and A.P. Sokolov, Phys. Rev. E 67, 031507 (2003).

https://doi.org/10.1103/PhysRevE.67.031507

S.A. Kivelson, X. Zhao, D. Kivelson, T.M. Fisher, and C.M. Knober, J. Chem. Phys. 101, 2391 (1994).

https://doi.org/10.1063/1.468414

G. Tarjus, S.A. Kivelson, Z. Nussinov, and P. Viot, J. Phys.: Condens. Matter 17, R1143, (2005).

https://doi.org/10.1088/0953-8984/17/50/R01

S.A. Kivelson and G. Tarjus, Nature Matter 7, 831 (2008).

https://doi.org/10.1038/nmat2304

H. Tanaka, J. Phys.: Condens. Matter 15, L491 (2003).

https://doi.org/10.1088/0953-8984/15/31/102

H. Tanaka, J. Non-Cryst. Solids 351, 3385 (2005).

https://doi.org/10.1016/j.jnoncrysol.2005.09.009

H. Tanaka, J. Non-Cryst. Solids 351, 678 (2005).

https://doi.org/10.1016/j.jnoncrysol.2005.01.070

I.V. Blazhov, N.P. Malomuzh, and S.V. Lishchuk, J. Chem. Phys. 121, 6435 (2004).

https://doi.org/10.1063/1.1789474

S. Buchner and A. Heuer, Phys. Rev. Lett. 84, 2168 (2000).

https://doi.org/10.1103/PhysRevLett.84.2168

E.W. Fischer, A. Bakai, A. Patkowski, W. Steffen, and L. Reinhardt, J. Non-Cryst. Solids 307-310, 584 (2002).

https://doi.org/10.1016/S0022-3093(02)01510-7

J. Baran, N.A. Davydova, M. Drozd, and A. Pietraszko, J. Phys.: Condens. Matter 18, 5695 (2006).

https://doi.org/10.1088/0953-8984/18/24/010

J. Baran, N.A. Davydova, and M. Drozd, J. Phys.: Condens. Matter 22, 155108 (2010).

https://doi.org/10.1088/0953-8984/22/15/155108

F. Fujara, B. Geil, H. Sillescu, and G. Fleischer, Z. Phys. B 88, 195 (1992).

https://doi.org/10.1007/BF01323572

M.T. Cicerone and M.D. Ediger, J. Chem. Phys. 104, 7210 (1996).

https://doi.org/10.1063/1.471433

W. Steffen, A. Patkowski, H. Glaser, G. Meier, and E.W. Fischer, Phys. Rev. E 49, 2992 (1994).

https://doi.org/10.1103/PhysRevE.49.2992

M. Kiebel, E. Bartsch, O. Debus, F. Fujara, W. Petry, and H. Sillescu, Phys. Rev. B 45, 10301 (1992).

https://doi.org/10.1103/PhysRevB.45.10301

G. Hinze, D.D. Brace, S.D. Gottke, and M.D. Fayer, Phys. Rev. Lett. 84, 2437 (2000).

https://doi.org/10.1103/PhysRevLett.84.2437

S.D. Gottke, D.D. Brace, G. Hinze, and M.D. Fayer, J. Phys. Chem. B 105, 238 (2001).

https://doi.org/10.1021/jp002949d

M.K. Mapes, S.F. Swallen, and M.D. Ediger, J. Phys. Chem. 110, 507 (2006).

https://doi.org/10.1021/jp0555955

C.-Y. Wang and M.D. Ediger, J. Phys. Chem. B 103, 4177 (1999).

https://doi.org/10.1021/jp984149x

M.T. Cicerone and M.D. Ediger, J. Chem. Phys. 103, 56 (1995).

https://doi.org/10.1063/1.470551

A. Barbieri, G. Gorini, and D. Leporini, Phys. Rev. E 69, 061509 (2004).

https://doi.org/10.1103/PhysRevE.69.061509

L. Andreozzi, M. Faetti, and M. Giordano, J. Non-Cryst. Solids 352, 3829 (2006).

https://doi.org/10.1016/j.jnoncrysol.2006.06.021

R. Casalini and C.V. Roland, Phys. Rev. Lett. 92, 245702 (2004).

https://doi.org/10.1103/PhysRevLett.92.245702

A. Criado, F.J. Bermejo, A. Andres, and J.L. Mertinez, Mol. Phys. 82, 787 (1994).

https://doi.org/10.1080/00268979400100564

L. Wu and S.R. Nagel, Phys. Rev. B 46, 11198 (1992).

https://doi.org/10.1103/PhysRevB.46.11198

R. Bohmer, G. Diezemann, G. Hinze, and H. Sillescu, J. Chem. Phys. 108, 890 (1998).

https://doi.org/10.1063/1.475452

R. Bohmer, G. Hinze, G. Diezemann, B. Geil, and H. Sillescu, Europhys. Lett. 36, 55 (1996).

https://doi.org/10.1209/epl/i1996-00186-5

C. Hansen, F. Stickel, T. Berger, R. Richert, and E. Fischer, J. Chem. Phys. 107, 1086 (1997).

https://doi.org/10.1063/1.474456

L.J. Lewis and G. Wahnstrom, Phys. Rev. Lett. 50, 3865 (1994).

A. Biswas, Appl. Spectrosc. 47, 458 (1993).

https://doi.org/10.1366/0003702934334921

H.C. Semmelhack and P. Esquinazi, Physica B 254, 14 (1998).

https://doi.org/10.1016/S0921-4526(98)00415-3

S. Mossa, R. Di Leonardo, G. Ruocco, and M. Sampoli, Phys. Rev. E 62, 612 (2000).

https://doi.org/10.1103/PhysRevE.62.612

S. Mossa, G. Ruocco, and M. Sampoli, Phys. Rev. E 64, 021511 (2001).

https://doi.org/10.1103/PhysRevE.64.021511

A. Tolle, H. Zimmermann, F. Fujara, W. Petry, W. Schmidt, H. Schober, and J. Wuttke, Eur. Phys. J. B 16, 73 (2000).

https://doi.org/10.1007/s100510070251

A. Tolle, J. Wuttke, H. Schober, O.G. Randl, and F. Fujara, Eur. Phys. J. B 5, 231 (1998).

https://doi.org/10.1007/s100510050439

A. Tolle, Rep. Prog. Phys. 64, 1473 (2001).

https://doi.org/10.1088/0034-4885/64/11/203

G.M. Brown and H.A. Levy, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. 35, 785 (1979).

https://doi.org/10.1107/S0567740879004805

S. Aikawa, Y. Maruyama, Y. Ohashi, and Y. Sasada, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. 34, 2901 (1978).

https://doi.org/10.1107/S0567740878009577

Published
2018-10-19
How to Cite
Baran, J., Davydova, N., Drozd, M., Ponezha, E., & Reznichenko, V. (2018). Nature of the Dynamic Crossover in Orthoterphenyl. Ukrainian Journal of Physics, 59(3), 292. https://doi.org/10.15407/ujpe59.03.0292
Section
Solid matter