Structure-Sensitive Properties of Cu-Based Binary Subsystems of High-Entropy Bi–Cu–Ga–Sn–Pb Alloy
DOI:
https://doi.org/10.15407/ujpe65.12.1089Keywords:
high-entropy alloys, viscosity, electrical conductivity, thermal emfAbstract
The temperature dependences of the viscosity, electrical conductivity, and thermal emf of the binary melts Cu50Bi50, Cu50Ga50, Cu50Pb50, and Cu50Sn50 with equiatomic concentrations, which are components of the high-entropy Bi–Cu–Ga–Sn–Pb alloy, have been studied. Based on the obtained results, the activation energy of the viscous flow and the configurational entropy of mixing are calculated. The obtained negative values of the mixing entropy testify to a structural ordering in the system.
References
J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, Ts.-Sh. Chin, T.-Ts. Shun, Ch.-H. Tsau, Sh.-Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Engin. Mater. 12, 299 (2004), https://doi.org/10.1002/adem.200300567
Y.P. Wang, B.Sh. Li, Zh.F. Heng. Solid solution or intermetallics in a alloy. Adv. Engin. Mater. 11, 641 (2009). high-entropy https://doi.org/10.1002/adem.200900057
Yu. Plevachuk, J. Brillo, A. Yakymovych. AlCoCrCuFeNi-based high-entropy alloys: correlation between molar density and enthalpy of mixing in the liquid state. Metallur. Mater. Trans. A 49, 6544 (2018). https://doi.org/10.1007/s11661-018-4925-4
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 11, 698 (2011). https://doi.org/10.1016/j.intermet.2011.01.004
Y.F. Kao, S.K. Chen, J.H. Sheu, J.T. Lin, W.E. Lin, J.W. Yeh, S.J. Lin, T.H. Liou, C.W. Wang. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int. J. Hydrogen Energy 35, 9046 (2010), https://doi.org/10.1016/j.ijhydene.2010.06.012
H.-P. Chou, Y.-Sh. Chang, S.-K. Chen, J.-W. Yeh. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Engin. B 163, 184 (2009). https://doi.org/10.1016/j.mseb.2009.05.024
S. Mudry, V. Sklyarchuk, and A. Yakymovych. Influence of doping with Ni on viscosity of liquid Al. J. of Phys. Stud. 12, 1601 (2008). https://doi.org/10.30970/jps.12.1601
S. Mudry, Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych. Viscosity of Bi-Zn liquid alloys. J. Non-Cryst. Solids 354, 4415 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.06.061
Yu. Plevachuk, V. Sklyarchuk. Electrophysical measurements for strongly aggressive liquid semiconductors. Meas. Sci. Technol. 12, 23 (2001). https://doi.org/10.1088/0957-0233/12/1/303
O.A. Chikova, V.S. Tsepelev, V.V. V'yukhin. Viscosity of high-entropy melts in Cu-Sn-Pb-Bi-Ga, G-Sn, Cu-Pb, Cu-Ga, and Cu-Bi equiatomic compositions. Russ. J. Non-Ferrous Met. 56, 246 (2015). https://doi.org/10.3103/S1067821215030037
C. Chaib, J-G. Gasser, J. Hugel, L. Roubi. Electrical resistivity and absolute thermoelectric power of liquid copper-lead alloys. Physica B 252, 106 (1998). https://doi.org/10.1016/S0921-4526(97)00675-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.