Electron Structure and Electric Conductivity of Graphene with a Nitrogen Impurity

  • S. P. Repetsky Taras Shevchenko National University of Kyiv
  • O. V. Tretiak Taras Shevchenko National University of Kyiv, Institute of High Technologies
  • I. G. Vyshivanaya Taras Shevchenko National University of Kyiv, Institute of High Technologies
Keywords: nitrogen-doped graphene, electron energy spectrum, tight-binding model, electric conductivity

Abstract

On the basis of the tight-binding model with the use of exchange-correlation potentials, the electron structure and the electric conductivity of graphene with a nitrogen impurity have been studied in the framework of density functional theory. The wave functions of 2s and 2p states of neutral noninteracting carbon atoms are selected as the basis ones. Band hybridization was found to result in the splitting of the electron energy spectrum near the Fermi level. In the nitrogen-doped graphene, owing to the overlapping of 2p energy bands, the mentioned gap is realized as a quasi-gap, in which the electron density of states has a much lower value in comparison with the other spectral region. It is found that an increase in the nitrogen concentration reduces the electric conductivity of graphene, although the density of states at the Fermi level grows at that. Hence, the reduction of the electric conductivity is associated with a sharper decrease in the relaxation time for electron states.

References

Yu.V. Skrypnyk and V.M. Loktev, Phys. Rev. B 73, 241402 (2006). https://doi.org/10.1103/PhysRevB.73.241402

Yu.V. Skrypnyk and V.M. Loktev, Phys. Rev. B 75, 245401 (2007). https://doi.org/10.1103/PhysRevB.75.245401

C. Yelgel and G.P. Srivastava, Appl. Surf. Sci. 258, 8338 (2012). https://doi.org/10.1016/j.apsusc.2012.03.167

D.A. Pablo, Chem. Phys. Lett. 492, 251 (2010). https://doi.org/10.1016/j.cplett.2010.04.038

D. Xiaohui, W. Yanqun, D. Jiayu, K. Dongdong, and Z. Dengyu, Phys. Lett. A 365, 3890 (2011).

K. Xu, C. Zeng, Q. Zhang, R. Yan, P. Ye, K. Wang, A.C. Seabaugh, H.G. Xing, J.S. Suehle, C.A. Richter, D.J. Gundlach, and N.V. Nguyen, Nano Lett., 13, 131 (2013). https://doi.org/10.1021/nl303669w

S. Kim, I. Jo, D.C. Dillen, D.A. Ferrer, B. Fallahazad, Z. Yao, S.K. Banerjee, and E. Tutuc, Phys. Rev. Lett. 108, 116404 (2012). https://doi.org/10.1103/PhysRevLett.108.116404

S.P. Repetsky and T.D. Shatnyi, Teor. Mat. Fiz. 131, 456 (2002). https://doi.org/10.4213/tmf340

S.P. Repetsky and I.G. Vyshyvanaya, Metallofiz. Noveish. Tekhnol. 26, 887 (2004).

S.P. Repetskii and I.G. Vyshyvanaya, Phys. Met. Metallogr. 99, 558 (2005).

S.P. Repetsky and I.G. Vyshyvanaya, Metallofiz. Noveish. Tekhnol. 29, 587 (2007).

S.P. Repetsky, I.G. Vyshyvanaya, V.V. Shastun, and A.F. Mel'nik, Metallofiz. Noveish. Tekhnol. 33, 425 (2011).

S.P. Repetsky, O.V. Tretyak, I.G. Vyshyvanaya, and V.V. Shastun, Ukr. J. Phys. 13, 189 (2012).

A.A. Abrikosov, L.P. Gor'kov, and I.E. Dzyaloshinskij, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, NJ, 1963).

J. Sun, M. Marsman, G.I. Csonka, A. Ruzsinszky, P. Hao, Y. Kim, G. Kresse, and J.P. Perdew, Phys. Rev. B 84, 035117 (2011). https://doi.org/10.1103/PhysRevB.84.035117

J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954). https://doi.org/10.1103/PhysRev.94.1498

A.R. Ubbelohde and F.A. Lewis, Graphite and Its Crystal Compounds (Clarendon Press, London, 1960).

Published
2019-01-22
How to Cite
Repetsky, S., Tretiak, O., & Vyshivanaya, I. (2019). Electron Structure and Electric Conductivity of Graphene with a Nitrogen Impurity. Ukrainian Journal of Physics, 60(2), 170. https://doi.org/10.15407/ujpe60.02.0170
Section
Nanosystems