Electrical, Optical and Luminescent Properties of Zinc Oxide Single Crystals

  • I. V. Markevich Iнститут фiзики напiвпровiдникiв iм. В.Є. Лашкарьова НАН України
  • L. V. Borkovska Iнститут фiзики напiвпровiдникiв iм. В.Є. Лашкарьова НАН України http://orcid.org/0000-0002-7832-3796
  • Ye. F. Venger Iнститут фiзики напiвпровiдникiв iм. В.Є. Лашкарьова НАН України
  • N. O. Korsunska Iнститут фiзики напiвпровiдникiв iм. В.Є. Лашкарьова НАН України http://orcid.org/0000-0002-4778-5074
  • V. I. Kushnirenko Iнститут фiзики напiвпровiдникiв iм. В.Є. Лашкарьова НАН України
  • O. V. Melnichuk Нiжинський державний унiверситет iменi Миколи Гоголя http://orcid.org/0000-0002-6768-8765
  • L. Yu. Melnichuk Нiжинський державний унiверситет iменi Миколи Гоголя
  • L. Yu. Khomenkova Iнститут фiзики напiвпровiдникiв iм. В.Є. Лашкарьова НАН України http://orcid.org/0000-0002-5267-5945
Keywords: -

Abstract

This review includes the results of investigations of the electrical, photoelectrical, optical, and luminescent properties of undoped single crystals of ZnO grown by the gas-cycle method. It is shown that the high conductivity of ZnO is caused by interstitial Zn atoms (Zni) that are shallow donors and are mobile at room temperature. It is found that the Zni relocation under intrinsic fields results in the appearance of the residual conductivity, shift of the optical absorption edge to longer wavelengths, and distortion of the exciton luminescence spectra. It is shown that the thin near-surface layer with high n-type conductivity arises due to the accumulation of Zni donors near the crystal surface due to their drift in the electric field of a depleted band caused by the oxygen adsorption. Based on the comparison of the exciton luminescence spectra and excitation spectra of the defect-related emission, it is proposed that the main excitation mechanism of the latter consists in the non-radiative recombination of excitons on the defect centers accompanied by the energy transfer to electrons located on these centers. The thermoluminescence of ZnO excited with the Joule heat release has been investigated. It is shown that this effect is caused by the recombination of equilibrium carriers produced by the heating through lattice defects.

References

И.П. Кузьмина, В.А. Никитенко. Окись цинка. Получение и оптические свойства (Наука, 1984).

D.C. Look, D.C. Reynolds, J.W. Hemsky et al. Production and annealing of electron irradiation damage in ZnO. Appl. Phys. Lett. 75 (6), 811 (1999).

D.C. Look, B. Claflin, Ya.L. Alivov, S.J. Park. The future of ZnO light emitters. Phys. Stat. Sol. (a) 201 (19), 2203 (2004).

S.B. Zhung, S.-H. Wei, A. Zunder. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63 (7), 075205-01 (2001).

D.C. Look, J.W. Hemsky, J.R. Sizelove. Residual native shallow donor in ZnO. Phys. Rev. Lett. 82 (12), 2552 (1999).

A.F. Kohan, G. Ceder, D. Morgan et al. First-principles study of native point defects in ZnO. Phys. Rev. B 61 (22), 15019 (2000).

F. Oba, Sh.R. Nishitani, S. Isotani et al. Energetics of native defects in ZnO. J. Appl. Phys. 90 (2), 824 (2001).

Y. Sun, H. Wang. The electronic properties of native interstitials in ZnO. Physica B 325, 157 (2003).

D.C. Look, C. Coskun, B. Claflin et al. Electrical and optical properties of defects and impurities in ZnO. Physica B 340–342, 32 (2003).

Ch.G. Van de Walle. Defect analysis and engineering in ZnO. Physica B 308–310, 899 (2001).

Ch.G. Van de Walle. Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85 (5), 1012 (2000).

S.F.J. Cox, E.A. Davis, S.P. Cottrel et al. Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86 (12), 2601 (2001).

D.M. Hoffmann, A. Hofstaetter, F. Leiter et al. Hydrogen: A relevant shallow donor in zinc oxide. Phys. Rev. Lett. 88 (4), 045504-1 (2002).

K. Shimomura, K. Nishiyama, R. Kadono. Electronic structure of the muonium center as a shallow donor in ZnO. Phys. Rev. Lett. 89 (25), 255505-1 (2002).

K. Ip, M.E. Overberg, Y.W. Heo et al. Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO. Appl. Phys. Lett. 82 (3), 385 (2003).

Ch.J. Van de Walle. Hydrogen as a shallow center in semiconductors and oxides. Phys. Stat. Sol. (b) 235 (1), 89 (2003).

D.J. Thomas, J.J. Lander. Surface conductivity produced on zinc oxide by zinc and hydrogen. J. Phys. Chem. Sol. 2 (4), 318 (1957).

Ф. Крегер. Химия несовершенных кристаллов (Мир, 1969).

B.R. Appelton, L.C. Feldman. Investigation of Zni concentrations in additivity colored ZnO. J. Phys. Chem. Sol. 33 (2), 507 (1972).

Hydrogen in semiconductors in “Semiconductors and Semimetals”. Edited by J.I. Pankove, N.M. Johnson (Academic Press, 1991), 34.

D.G. Thomas, J.J. Lander. Hydrogen as a donor in zinc oxide. J. Chem. Phys. 25 (6), 1136 (1956).

A.R. Hutson. Hall effect studies of doped ZnO crystals. Phys. Rev. 108 (2), 222 (1957).

E.V. Lavrov Infrared absorption spectroscopy of hydrogen-related defects in ZnO. Physica B 340–342, 195 (2003).

S.J. Jokela, M.D. Mc.Cluskey, K.J. Lynn. Infrared spectroscopy of hydrogen in zinc oxide. Physica B 341–342, 221 (2003).

F. Leiter, H.R. Alves, A. Hofstaetter et al. The oxygen vacancy as the origin of a green emission in undoped ZnO. Phys. Stat. Sol. (b) 226 (1), R4 (2001).

D.J. Thomas. Interstitial zinc in zinc oxide. J. Phys. Chem. Sol. 3 (3/4), 229 (1957).

T.K. Gupta. Application of zinc oxide varistors. J. Am. Ceram. Soc. 73 (7), 1811 (1990).

D. Gerthsen, D. Litvinov, Th. Gruber et al. Origin and consequences of a high stacking fault density in epitaxial ZnO layers. Appl. Phys. Lett. 81 (21), 3972 (2001).

Атомная диффузия в полупроводниках, под ред. Д. Шоу (Мир, 1975).

N.E. Korsunska, I.V. Markevich, T.V. Torchinska, M.K. Sheinkman. Electrodiffusion of shallow donors in CdS crystals. J. Phys. C 13 (4), 1275 (1980).

L.V. Borkovska, L.Yu. Khomenkova, I.V. Markevich et al. Investigation of lattice defects by means of their drift under electric field. Physica B 308–310, 967 (2001).

L.V. Borkovska, N.O. Korsunska, I.V. Markevich, M.K. Sheinkman. Mobile point defects in wide-band gap II–VI semiconductors as a factor of their instability. In: New Developments in Condensed Matter Physics. Edited by J.V. Chang, (2006), Chap. 9, p. 2315.

Л.В. Борковская, В.И. Кушниренко, И.В. Маркевич, Л.Ю. Хоменкова. Остаточные доноры в оксиде цинка: природа и влияние на свойства кристаллов. Оптоэлектроника и полупроводниковая техника 40, 17 (2005).

I.V. Markevich, V.I. Kushnirenko, L.V. Borkovska, B.M. Bulakh. Mobile donors in undoped ZnO. Phys. Stat. Sol. (c) 3 (4), 942 (2006).

L.Yu. Khomenkova, V.I. Kushnirenko, I.V. Markevich et al. The influence of defect drift in external electric field on green luminesence of ZnO single crystals. J. Lumin. 102–103, 733 (2003).

D.C. Look, J.W.Hemsky, J.R. Sizelov. Residual native donor in ZnO. Phys. Rev. Lett. 82 (12), 2552 (1999).

P. Bonasewicz, W. Hirschwald. Photoconductivity and photosorption. Curr. Top. Mater. Sci. 7, 411 (1981).

K.I. Hagemark, P.E. Toren. Determination of excess zinc in ZnO. J. Electrochem. Soc. 122, 922 (1975).

Н.В. Климова, Н.Е. Корсунская, И.В. Маркевич, Г.С. Пекарь, А.Ф. Сингаевский. Способ выращивания фоточувствительных монокристаллов халькогенидов кадмия методом сублимации. (Pешение о выдаче патента России по заявке №4842140/26, 1995).

I.V. Markevich, V.I. Kushnirenko, B.M. Bulakh. Role of excitons in the excitation of deep-level emission in ZnO crystals. Phys. Stat. Sol. C 7, 1605 (2010).

I.V. Markevich, I.V. Kushnirenko, B.M. Bulakh. Photoinduced changes of photoconductivity and exciton luminescence in ZnO crystals. Phys. Stat. Sol. (b) 244, 1549 (2007).

I.V. Markevich, V.I. Kushnirenko, L.V. Borkovska, B.M. Bulakh. Mechnism of formation of highly conductive layer on ZnO crystal surface. Solid State Commun. 136 (8), 475 (2005).

В.Е. Лашкарев, А.В. Любченко, М.К. Шейнкман. Неравновесные процессы в полупроводниках (Наукова думка, 1981).

B. Bulakh, L. Khomenkova, V. Kushnirenko, I. Markevich. The influence of crystal imperfections on the shape of exciton emission spectrum in ZnO single crystals. EPJ Appl. Phys. 27, 305 (2004).

Р. Бьюб. Фотопроводимость твердых тел (Иностр. лит., 1962).

W. G¨opel. Oxygen interaction of stoichiometric and non-stoichiometric ZnO prismatic surfaces. Surf. Sci. 62 (1), 165 (1977).

B.M. Bulakh, L.Yu. Khomenkova, V.I. Kushnirenko, I.V. Markevich. The influence of crystal imperfections on the shape of exciton emission spectrum in ZnO single crystals. Eur. Phys. J. Appl. Phys. 27, 305 (2004).

L.V Borkovska, B.M.Bulakh, V.I. Kushnirenko, I.V. Markevich, A.V. Rusavsky. Influence of dislocation decoration with mobile donors on exciton luminescence in ZnO crystals. Phys. stat. sol. (c) 4 (8), 3086 (2007).

A. Baidullaeva, B.M. Bulakh, V.I. Kushnirenko, I.V. Markevich. The change in optical characteristics of ZnO crystals under ruby laser irradiation. Semiconductor Physics, Quantum Electronics and Optoelectronics 6 (4), 350 (2004).

S. Ostapenko, N.E. Korsunska, M.K. Sheinkman. Ultrasound stimulated defect reactions in semiconductors. Defect interaction and clustering in semiconductors. Edited by S. Pizzini (Scitec Publications Ltd, 2002).

L.V. Borkovska, N.E. Korsunska, I.V. Markevich et al. Redistribution of mobile point defects in CdS crystals under ultrasound treatment. Physica B 340–342, 258 (2003).

I.V. Markevich, V.I. Kushnirenko, B.M. Bulakh. Mechanism of light emission excited by Joule heating in ZnO crystals. J. Phys. Chem. Sol. 72, 980 (2011).

A. Janotti, Ch.G. Van de Walle. Fundumentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 12650-1 (2009).

¨ U. ¨ Ozg¨ur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doрan, V. Avrutin, S.-J. Cho, H. Morko¸c. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 04130-1 (2005).

Е.Ф. Гросс, С.А. Пермогоров, Б.С. Разбирин. Аннигиляция экситонов и экситон-фононное взаимодействие. УФН 103, 431 (1971).

I.V. Markevich, V.I. Kushnirenko, B.M. Bulakh. Centers of photosensitivity in ZnO. Solid State Commun. 144, 236 (2007).

Б.Л. Гельмонт, Н.Н. Зиновьев, Д.И. Ковалев, В.А. Харченко, И.Д. Ярошецкий, И.Н. Яссиевич. Оже-рекомбинация связанных экситонов, индуцированная акустическими фононами. ЖЭТФ 94, 322 (1988).

Ю.Н. Николаев, М.В. Фок. Принципы преобразования электрической энергии в световую. Труды ФИАН СССР 50, 106 (1970).

В.А. Соколов. Катодолюминесценция. УФН 47, 537 (1952).

G. Heiland, E. Mollwo, F. St¨ockmann. Electronic processes in zinc oxide. Solid State Phys. 8 (4), 223 (1959).

H.F. Ivey. Catodoluminescence and radical-excited luminescence. J. Lumin. 8, 271 (1974).

D.C. Reynolds, D.C. Look, B. Jogai. Fine structure of the green band in ZnO. J. Appl. Phys. 89 (11), 6189 (2001).

W.G. Spitzer, D. Kleinman, D. Walsh Infrared properties of hexagonal siicon carbide. Phys. Rev. 113 (1), 127 (1959).

Е.Ф. Венгер, Ю.А. Пасечник, О.В. Снитко, С.В. Стрижевский. Влияние обработок поверхности на свойства поверхностных поляритонов карбида кремния. УФЖ 25 (9), 1460 (1980).

А.В. Мельничук, Л.Ю. Мельничук, Ю.А. Пасечник. Анизотропия электрофизических свойств монокристаллов окиси цинка. ФТТ 36 (9), 2624 (1984).

E.F. Venger, A.V. Melnichuk, L.Ju. Melnichuk, Ju.A. Pasechnik. Anisotropy of the ZnO single crystal reflectivity in the region of residual rays. Phys. Stat. Sol. (b) 188 (2), 823 (1995).

Published
2018-12-12
How to Cite
Markevich, I., Borkovska, L., Venger, Y., Korsunska, N., Kushnirenko, V., Melnichuk, O., Melnichuk, L., & Khomenkova, L. (2018). Electrical, Optical and Luminescent Properties of Zinc Oxide Single Crystals. Ukrainian Journal of Physics, 13(1), 57. Retrieved from https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018235
Section
Reviews