Effect of Ionic Ordering in Conductivity Experiments of DNA Aqueous Solutions


  • O. O. Liubysh Taras Shevchenko National University of Kyiv
  • O. M. Alekseev Taras Shevchenko National University of Kyiv
  • S. Yu. Tkachov Taras Shevchenko National University of Kyiv
  • S. M. Perepelytsya Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine




effects of ionic ordering, DNA water solutions, conductivity, electrolyte theory, mechanism of counterion ordering, DNA-salt complexes


The effects of ionic ordering in DNA water solutions are studied by conductivity experiments. The conductivity measurements are performed for the solutions of DNA with KCl salt in the temperature interval from 28 to 70 ∘C. The salt concentration varied from 0 to 2 M. The measurements of the conductivity of solutions without DNA but with the same concentration of KCl salt are also performed. The results show that, in the case of a salt-free solution of DNA, the melting process of the double helix is observed, while, in the case of the DNA solution with added salt, the macromolecule denaturation is not featured. For salt concentrations lower than some critical one (0.4 M), the DNA solution conductivity is higher than the conductivity of a KCl water solution without DNA. Starting from the critical concentration, the conductivity of a KCl solution is higher than the conductivity of a DNA solution with added salt. For the description of the experimental data, a phenomenological model is elaborated basing on electrolyte theory. In the framework of the developed model, a mechanism of counterion ordering is introduced. According to this mechanism the electrical conductivity of the system at low salt concentrations is caused by counterions of the DNA ion-hydrate shell. At an increasing the amount of salt to the critical concentration, counterions condense on the DNA polyanion. A further increase of the salt concentration leads to the formation of DNA-salt complexes, which decreases the conductivity of the system.


W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984).


Yu.P. Blagoi, V.L. Galkin, V.L. Gladchenko, S.V. Kornilova, V.A. Sorokin, and A.G. Shkorbatov, The Complexes of Nucleic Acids and Metals in the Solutions (Naukova Dumka, Kiev, 1991) (in Russian).

V.Ya. Maleev, M.A. Semenov, M.A. Gassan, and V.A. Kashpur, Biofizika 38, No. 5, 768 (1993).

Y. Levin, Rep. Prog. Phys. 65, 1577 (2002).


A.A. Kornyshev, D. J. Lee, S. Leikin, and A. Wynveen, Rev. Mod. Phys. 79, 943 (2007).


G.S. Manning, Q. Rev. Biophys. 11, 179 (1978).


V.A. Bloomfield, Biopol., 44, 269 (1997).


R. Das, T. T. Mills, L.W. Kwok, G.S. Maskel, I.S. Millet, S. Doniach, K.D. Finkelstein, D. Herschlag, and L. Pollack, Phys. Rev. Lett. 90, 188103 (2003).


S.M. Perepelytsya and S.N. Volkov, Ukr. J. Phys. 49, 1074 (2004).

S.M. Perepelytsya and S.N. Volkov, Eur. Phys. J. E 24, 261 (2007).


L.D. Williams and L.J. Maher III, Ann. Rev. Biophys. Biomol. Struct., 24, 497 (2000).


C.G. Baumann, S.B. Smith, V.A. Bloomfield, and C. Bustamante, Proc. Natl. Acad. Sci. USA 94, 6185 (1997).


V.B. Teif and K. Bohinc, Progr. Biophys. Mol. Biol. 105, 208 (2011).


A. Estevez-Torres and D. Baigl, Soft Matter 7, 6746 (2011).


M.-L. Ainalem and T. Nylander, Soft Matter 7, 4577 (2011).


S.M. Perepelytsya, G.M. Glibitskiy, and S.N. Volkov, Biopol. 99, 508 (2013).


I. A. Kuznetsov and N.V. Apolonnik, Biopolymers 20, 20831 (1981).


I. A. Kuznetsov, N.V. Apolonnik, and I. S. Shklover, Biopol. and Cell 3, No. 2, 72 (1987).


O.M. Alekseyev, L. A. Bulavin, and D.O. Shamayko, Ukrainica Bioorganica Acta, No. 1, 45 (2009).

D. Truzzoillo, F. Bordi, C. Cametti and S. Sennato, Phys. Rev. E 79, 011804 (2009).


T. Vuletic, S. Dolanski Babik, D. Grgicin, D. Aumiler, J. Radler, F. Livolant, and S. Tomic, Phys. Rev. E 83, 041803 (2011).


J.I. Sheu and E.Y. Sheu, AAPS Pharm. Sci. Tech. 7(2), 36 (2006).


Yi-S. Liu, P.P. Banada, S. Bhattacharya, A.K. Bhunia, and R. Bashir, Appl. Phys. Lett. 92, 143902 (2008).

G.S. Manning, J. Phys. Chem. 79, 262 (1975).


G.S. Manning, J. Phys. Chem. 85, 1508 (1981).

A. Dobrynin and M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005).


D.B. Wells, S. Bhattacharya, R. Carr, C. Maffeo, A. Ho, J. Comer, and A. Aksimentiev, Methods Mol. Biol. 870, 165 (2012).


P. Varnai and K. Zakrzewska, Nucleic Acids Res. 32, 4269 (2004).


S.Y. Ponomarev, K.M. Thayer, and D.L. Beveridge, Proc. Natl. Acad. Sci. USA 101, 14771 (2004).


Y. Cheng, N. Korolev, and L. Nordenskiold, Nucleic Acids Res. 34, 686 (2006).


S.Sen, D. Andreatta, S.Y. Ponomarev, D.L. Beveridge, and M.A. Berg, J. Am. Chem. Soc. 131, 1724 (2009).


L.A. Bulavin, S.N. Volkov, S.Yu. Kutovy, and S.M. Perepelytsya, Dopov. NAN Ukrainy, No. 11, 69 (2007); arXiv:0805.0696.

S.M. Perepelytsya and S.N. Volkov, Eur. Phys. J. E 31, 201 (2010).


S.M. Perepelytsya and S.N. Volkov, J. Mol. Liquids 5, 1182 (2011).

S.M. Perepelytsya and S.N. Volkov, Ukr. J. Phys. 58, 554 (2013).


K. Tanaka and Y. Okahata, J. Am. Chem. Soc. 118(44), 10679 (1996).


T. Erdey-Gru, Transport Phenomena in Aqueous Solutions (Akad’emiai Kiad’o, Budapest, 1974).

A.Yu. Grosberg and A.R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) (in Russian).

B.P. Nikol'skii et al., Handbook of Chemistry, Vol. 2 (Khimiya, Leningrad, 1964) (in Russian).



How to Cite

Liubysh, O. O., Alekseev, O. M., Tkachov, S. Y., & Perepelytsya, S. M. (2018). Effect of Ionic Ordering in Conductivity Experiments of DNA Aqueous Solutions. Ukrainian Journal of Physics, 59(5), 479. https://doi.org/10.15407/ujpe59.05.0479



Soft matter

Most read articles by the same author(s)