Electronic Structure and Magnetic Properties of Heusler Alloys MMnSb (M = Ni, Pd, Pt)


  • V.N. Uvarov G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • N.V. Uvarov G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • M.P. Melnik G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine




band calculations, cohesive energy, magnetic moments, spintronics


The energy, charge, and spin characteristics of the MMnSb (M = Ni, Pd, Pt) alloys have been obtained using band calculations in the framework of the full-potential linearized augmented plane-wave (FLAPW) model. The obtained data show that, owing to an increase of the covalent atomic interaction, the cohesive energies monotonically increase along the alloy series PdMnSb–NiMnSb–PtMnSb, with the indicated alloys being ferromagnetically ordered and characterized by the enhanced localization of magnetic moments at the manganese atoms. It is found that the main contribution to the formation of magnetic moments in the alloys is made by 3d-electrons of the manganese atoms. The dominant role is played by electrons on the t2g -orbital, and the less one by electrons on the eg-orbital. The contribution of the s- and p-electrons of Mn atoms and the electrons of other atoms to the formation of magnetic moments of the examined alloys is found to be small.


T. Graf, C. Felser, S.S.P. Parkin. Simple rules for the understanding of Heusler compounds. Progr. Solid State Chem. 39, 1 (2011).


G.E. Bacon, J.S. Plant. Chemical ordering in Heusler alloys with the general formula A2BC or ABC. J. Phys. F 1, 524 (1971).


I. Galanakis, P.H. Dederichs, N. Papanikolaou. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002).


C. Felser, G.H. Fecher, B. Balke. Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668 (2007).


Half-Metallic Alloys. Fundamentals and Applications. Edited by I. Galanakis, P.H. Dederichs (Springer, 2005).

M.J. Otto, R.A.M. van Woerden, P.J. van der Valk et al. Half-metallic ferromagnets. I. Structure and magnetic properties of NiMnSb and related inter-metallic compounds. J. Phys.: Condens. Matter l, 2341 (1989).


M.J. Otto, H. Feil, R.A.M. van Woerden et al. Electronic structure and magnetic, electrical and optical properties of ferromagnetic Heusler alloys. J. Magn. Magn. Mater. 70, 33 (1987).


R.B. Helmhold, R.A. de Groot, F.M. Mueller et al. Magnetic and crystallographic properties of several C1b type Heusler compounds. J. Magn. Magn. Mater. 43, 249 (1984).


K.H.J. Buschow, P.G. van Engen, R. Jongebreur. Magnetooptical properties of metallic ferromagnetic materials. J. Magn. Magn. Mater. 38, 1 (1983).


P.J. Webster, K.R.A. Ziebeck. Structures of Pd(2−x)Mnx Sb - animproved neutron polarizer. J. Magn. Magn. Mater. 15-18, 473 (1980).


K. Watanabe. On new ferromagnetic intermetallic compounds PtMnSn and PtMnSb. J. Phys. Soc. Jap. 28, 302 (1970).


B.R.K. Nanda, I. Dasgupta. Electronic structure and magnetism in doped semiconducting half-Heusler compounds. J. Phys.: Condens. Matter 17, 5037 (2005).


D. Jung, H.-J. Koo, M.-H. Whangbo. Study of the 18-electron band gap and ferromagnetism in semi-Heusler compounds by non-spin-polarized electronic band structure calculations. J. Mol. Struct. (Theochem) 527, 113 (2000).


D. Orgassa, H. Fujiwara, T.C. Schulthess, W.H. Butler. First-principles calculation of the eff ect of atomic disorder

on the electronic structure of the half-metallic ferromagnet NiMnSb. Phys. Rev. B 60, 13237 (1999).


R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983).


H. Binczycka, Z. Dimitrijevic, B. Gajic, A. Szytula. Atomic and magnetic structure of Mn(5−x)FexSi3. Phys. Status Solidi A 19, K13 (1973).


D. Singh. Plane Waves, Psedopotentials and LAPW Method (Kluwer Academic, 1994). https://doi.org/10.1007/978-1-4757-2312-0

J.P. Perdew, S. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universit¨at Wien, 2001).

http://www.wien2k.at/reg user/faq/.

J.N. Murrell, S.F.A. Kettle, J.M. Tedder. Valence Theory (Wiley, 1967).

I.Galanakis, P.H. Dederics, N. Papanikolaou. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002). https://doi.org/10.1103/PhysRevB.66.174429

A. Szytula, J. Dimitrijevich, A. Todorovich et al. Atomic and magnetic structure of the Heusler alloys NiMnSb and CoMnSb. Phys. Status Solidi A 9, 97 (1972). https://doi.org/10.1002/pssa.2210090109

A. Kimura, S. Suga, T. Shishidou et al. Magnetic circular dichroism in the soft-x-ray absorption spectra of Mn-based magnetic intermetallic compounds. Phys. Rev. B 56, 6021 (1997). https://doi.org/10.1103/PhysRevB.56.6021



How to Cite

Uvarov, V., Uvarov, N., & Melnik, M. (2021). Electronic Structure and Magnetic Properties of Heusler Alloys MMnSb (M = Ni, Pd, Pt). Ukrainian Journal of Physics, 66(5), 450. https://doi.org/10.15407/ujpe66.5.450



Structure of materials