Studies of Thermodynamical and Electronic Transport Properties of Na–Sn Alloy


  • A. Kumar Faculty of Sciences (Physics), National Defence Academy
  • D.P. Ojha School of Physics, Sambalpur University



mixing, fluids, electronic transport, liquid alloys, thermodynamic properties


The concept of complex formation has been incorporated in the structure of the Faber–Ziman formula for the purpose of studying the composition dependence of the electrical resistivities of Zintl alloys, which possess the anomalous nature and exhibit a large deviation from the metallic behavior around a specific composition


F. Springelkamp, R.A. de Groot, placeW. Geertsma, W. van der Lugt, F.M. Mueller. Electronic structure of semiconducting B-NaSn. Phys. Rev. B 32, 2319 (1985).

A. Kumar, D.P. Ojha. Study of electronic density of states: Zintl alloys. Met. Mat. Trans. B 55, 362 (2011).

Q. Fang, H. Wendt. Performance and thermodynamic properties of Na-Sn and Na-Pb molten alloy electrodes for

alkali metal thermoelectric converter (AMTEC). J. Appl. Electrochem. 26, 343 (1996).

Y. Satoshi, O.I. Takno, H. Satoru. Observation of lithium isotope eff ect accompanying electrochemical insertion of lithium into tin. J. Nucl. Sci. and Tech. 37, 919 (2000).

O. Genser, J. Hafner. Structure and bonding in crystalline and molten Li-Sn alloys: A first-principles density- functional study. Phys. Rev. B 63, 144204 (2001).

Y. Kang, T. Terai. In-reactor experiment and the tritium diffusion coefficient in molten lithium-tin alloy. J. Nucl. Mater. 329-333, 1318 (2004).

placeS. Jahn, J.-B Suck, M.M. Koza. Atomic dynamics in liquid Kx Sb1−x alloys. J. Non Cryst. Sol. 353, 3145 (2007).

A. Thakur, P.K. Ahluwalia. Electrical resistivity of NaSn compound forming liquid alloy using ab initio pseudopotentials. Physica B 373, 163 (2006).

M. Saboungi, W. Geertsma, D.L. Price. Ordering in liquid alloys. Annu. Rev. Phys. Chem. 41, 207 (1990).

O. Akinlade. Ordering phenomena in Na-Ga and Na-Sn molten alloys. Phys. Chem. Liq. 29, 9 (1995).

H. Schaefer, B. Eisenmann, W. Muller. Zintl phases: Transitions between metallic and ionic bonding. Angew. Chem. 12, 694 (1973).

placeW. Geertsma, J. Dijkstra, W. van der Lugt. Electronic structure and charge-transfer-induced cluster formation in alkali-group-IV alloys. J. Phys. F.: Met. Phys. 14, 1833 (1984).

A.B. Bhatia. Proc. 3rd Int. Conf. on Liquid Metals, 1976 (Inst. Phys. of Bristol, 1977), Vol. 30, p. 21.

R.N. Singh. Short-range order and concentration fluctuations in binary molten alloys. Can. J. Phys. 65, 309 (1987).

B. Wang. Ab Initio Studies of Pure Sn and Mixed Na-Sn Clusters with Implications for Liquid Na-Sn Alloys. PhD

Thesis (Queen's University, 1997).

W. van der Lugt. Polyanions in liquid ionic alloys: A decade of research. J. Phys. Condens. Matter. 8, 6115 (1996).

T.E. Faber, J.M. Ziman. A theory of the electrical properties of liquid metals. Phil. Mag. 11, 153 (1965).

R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley. Selected Values of the Thermodynamic Properties of Binary Alloys (Am. Soc. Met., 1973) [ISBN: 76-0175-0].

A.B. Bhatia, W.H. Hargrove. Concentration fluctuations and thermodynamic properties of some compound forming binary molten systems. Phys. Rev. B 10, 3186 (1974).

R.N. Singh. Short-range order and concentration fluctuations in binary molten alloys. Can. J. Phys. 65, 309 (1987).

R.N. Singh, I.S. Jha, D.K. Pandey. Thermodynamics of liquid Mg-Sn alloys. J. Phys. Cond. Matter. 5, 2469 (1993).

A. Kumar, S.M. Rafi que, placeN. Jha, A.K. Mishra. Structure, thermodynamic, electrical and surface properties of Cu-Mg binary alloy: Complex formation model. Physica B 357, 445 (2005).

A. Kumar, S.M. Rafique, N. Jha. Study of glass forming tendency of Ca-Mg binary alloy and its physical properties: Pseudomolecule formation model. Physica B 373, 169 (2006).

A. Kumar, S.M. Rafi que, placeN. Jha, T.P. Sinha. Complex formation study of thermodynamical, structural properties and density of states of Al-Mg binary alloy. Physica B 404, 1933 (2009).

H.C. Longuet-Higgins. The statistical thermodynamics of multicomponent systems. Proc. Roy. Soc. A 207, 247 (1951).

O. Ese, J.A. Reissland. Optimized model potential parameters in metals. J. Phys. F.: Met. Phys. 3, 2066 (1973).

R.W. Shaw. Optimum form of a modified Heine-Abarenkov model potential for the theory of simple metals. Phys. Rev. 174, 769 (1968).

K. Hiroike. Ornstein-Zernike relation for a fluid mixture with direct correlation functions of finite range. J. Phys. Soc. Japan 27, 1415 (1969).

K. Hoshino. Entropy of mixing of compound-forming liquid binary alloys with two types of compound. J. Phys. F: Met. Phys. 12, 1891 (1982).

C. Van der Marel, A.B. Van Oosten, W. Geertsma, W. Van der Lugt. The electrical resistivity of liquid Li-Sn, Na-Sn

and Na-Pb alloys: Strong effects of chemical interactions. J. Phys. F.: Met. Phys. 12, 2349 (1982).

F.W. Dorn, W. Klemm. Das Verhalten der Alkalimetalle zu Halbmetallen. V. Die systeme des antimons mit kalium,

rubidium und caesium. Z. Anorg. Allg. Chem. 309, 189 (1961).

Y. Waseda. In: Liquid Metals, Edited by R. Evans, D.A. Greenwood (Inst. Phys. of Bristol, 1977), Chap. 2, p. 230.

H. Reiter, H. Ruppersberg, W. Speicher. In: Liquid Metals, 1976. Edited by R. Evans, D.A. Greenwood (Inst. Phys. of Bristol, 1977), p. 133.




How to Cite

Kumar, A., & Ojha, D. (2021). Studies of Thermodynamical and Electronic Transport Properties of Na–Sn Alloy. Ukrainian Journal of Physics, 66(7), 588.



General physics