The Neutrino Mass Experiment KATRIN

  • F. M. Fraenkle Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT)
Keywords: neutrino mass, tritium B-decay, spectrometers

Abstract

The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment with the objective to determine the effective electron antineutrino mass in a model-independent way with an unprecedented sensitivity of 0.2 eV/c2 at 90% C.L. The measurement method is based on the precision B-decay spectroscopy of molecular tritium. The experimental setup consists of a high-luminosity windowless gaseous tritium source, a magnetic electron transport system with differential cryogenic pumping for the tritium retention, and an electrostatic spectrometer section for the energy analysis, followed by a segmented detector system for the counting of transmitted B-electrons. The first KATRIN neutrino mass measurement phase started in March 2019. Here, we will give an overview of the KATRIN experiment and its current status.

References

E. Fermi. Versuch einer Theorie der B-Strahlen. Zeitschrift f?ur Phys. 88, 161 (1934) https://doi.org/10.1007/BF01351864

C. Patrignani et al. (Particle Data Group). Review of particle physics. Chin. Phys. C 40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

C. Kraus et al. Final results from phase II of the Mainz neutrino mass search in tritium B decay. Europ. Phys. J. C 40, 447 (2005). https://doi.org/10.1140/epjc/s2005-02139-7

V.N. Aseev et al. Upper limit on the electron antineutrino mass from the Troitsk experiment. Phys. Rev. D 84, 112003 (2011). https://doi.org/10.1103/PhysRevD.84.112003

K. Collaboration. KATRIN design report. FZKA scientific report, 7090 (2005).

G. Beamson it et al. The collimating and magnifying properties of a superconducting field photoelectron spectrometer. J. Phys. E: Sci. Inst. 13, 64 (1980). https://doi.org/10.1088/0022-3735/13/1/018

J.F. Amsbaugh et al. Focal-plane detector system for the KATRIN experiment. Nucl. Instr. Methods in Phys. Res. Section A 778, 40 (2015). https://doi.org/10.1016/j.nima.2014.12.116

S. Grohmann et al. The thermal behaviour of the tritium source in KATRIN. Cryogenics 55-56, 5 (2013). https://doi.org/10.1016/j.cryogenics.2013.01.001

F. Eichelhardt et al., The cryogenic pumping section of KATRIN and the test experiment TRAP. Nucl. Phys. B - Proc. Suppl. 221, 342 (2011). https://doi.org/10.1016/j.nuclphysbps.2011.09.042

M. Erhard it et al. High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment. J. Instrum. 9, P06022 (2014). https://doi.org/10.1088/1748-0221/9/06/P06022

K. Collaboration. Commissioning of the vacuum system of the KATRIN Main Spectrometer. J. Instrum. 11, 1 (2016).

Published
2019-09-17
How to Cite
Fraenkle, F. (2019). The Neutrino Mass Experiment KATRIN. Ukrainian Journal of Physics, 64(7), 573. https://doi.org/10.15407/ujpe64.7.573
Section
New Trends in High-Energy Physics (Conference materials)