Uncertainties Due to Hadronic Production in Final-State Interactions at Long-Baseline Neutrino Facility
DOI:
https://doi.org/10.15407/ujpe67.1.22Keywords:
neutrino, uncertainties, final-state interactions, survival probability, nuclear effectsAbstract
Recent neutrino oscillation experiments used high atomic number nuclear targets to attain sufficient interaction rates. The use of these complex targets introduced systematic uncertainties due to the nuclear effects in the experimental observables and need to be measured properly to pin down the discovery. Through this simulation work, we are trying to quantify the nuclear effects in the argon (Ar) target in comparison to hydrogen (H) target which are proposed to be used at Deep Underground Neutrino Experiment far detector and near detector, respectively. Generated Events for Neutrino Interaction Experiments and NuWro, two neutrino event generators, are used to construct final state kinematics. To quantify the systematic uncertainties in the observables, we present the ratio of the oscillation probabilities (P(Ar)/P(H)) as a function of the reconstructed neutrino energy.
References
B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical Design report. Volume I. Introduction to DUNE. JINST 15, 08, T08008 (2020).
B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report. Volume II. DUNE Physics. arXiv:2002.03005 [hepex] (2020).
B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report. Volume III. DUNE Far Detector Technical Coordination. JINST 15 (08), T08009 (2020).
B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report. Volume IV. Far Detector Single-phase Technology. JINST 15 (08), T08010 (2020).
B. Abi et al. (DUNE collaboration). Long-baseline neutrino oscillation physics potential of the DUNE experiment. Eur. Phys. J. C 80, 978 (2020).
B. Abi et al. (DUNE collaboration). Supernova neutrino burst detection with the deep underground neutrino experiment. Eur. Phys. J. C 81, 423 (2021).
B. Abi et al. (DUNE collaboration). A prospects for beyond the standard model physics searches at the deep underground neutrino experiment. Eur. Phys. J. C 80, 322 (2021).
J. Singh. Constraining the effective mass of Majorana neutrino with sterile neutrino mass for inverted ordering spectrum. Adv. High Energy Phys. 2019, 1 (2019).
https://doi.org/10.1155/2019/4863620
S. Nagu, J. Singh, J. Singh, R.B. Singh. Impact of crosssectional uncertainties on DUNE sensitivity due to nuclear effects. Nucl. Phys. B 951, 114888 (2020).
https://doi.org/10.1016/j.nuclphysb.2019.114888
P. Coloma, P. Huber, C. Jen, C. Mariani. Neutrino-nucleus interaction models and their impact on oscillation analyses. Phys. Rev. D 89, 073015 (2014).
https://doi.org/10.1103/PhysRevD.89.073015
S. Nagu, J. Singh, J. Singh, R.B. Singh. Nuclear effects and CP sensitivity at DUNE. Adv. High Energy Phys. 2020, 5472713 (2020).
https://doi.org/10.1155/2020/5472713
S. Frullani, J. Mouge. Single particle properties of nuclei through (e, e′p) reactions. Adv. Nucl. Phys. 14, 1-283 (1984).
R.A. Smith, E.J. Moniz. Neutrino reactions on nuclear targets. Nucl. Phys. B 43, 605 (1972).
https://doi.org/10.1016/0550-3213(72)90040-5
H. Chen et al. (MicroBooNE Collaboration). FERMILABPROPOSAL-0974 (2007).
A.A. Aguilar-Areval et al. (MiniBooNE Collaboration). Measurement of muon neutrino quasielastic scattering on carbon. Phys. Rev. Lett. 100, 032301 (2008).
U. Mosel, O. Lalakulich. Neutrino-nucleus interactions. arXiv:1211.1977v1 [nucl-th] (2012).
https://doi.org/10.1063/1.3700587
J. Singh, S. Nagu, J. Singh, R.B. Singh. Quantifying multinucleon effect in argon using high-pressure TPC. Nucl. Phys. B 957, 115103 (2020).
https://doi.org/10.1016/j.nuclphysb.2020.115103
C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, A. Meregaglia, D. Naples, G. Pearce, A. Rubbia, M. Whalley, T. Yang. The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Meth. A 614, 87 (2010).
https://doi.org/10.1016/j.nima.2009.12.009
T. Golan, C. Juszczak, J.T. Sobczyk. Effects of final-state interactions in neutrino-nucleus interactions. Phys. Rev. C 86, 015505 (2012).
https://doi.org/10.1103/PhysRevC.86.015505
D. Drakoulakos et al. (Minerva Collaboration). Proposal to perform a high-statistics neutrino scattering experiment using a fine-grained detector. FERMILAB-P-938 (2004). hep-ex/0405002.
P. Adamson et al. (MINOS Collaboration). Study of muon neutrino disappearance using the Fermilab main injector neutrino beam. Phys. Rev. D 77, 072002 (2008).
D. Ayres et al. (NOvA Collaboration). NOvA proposal to build a 30 kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI Beamline. FermilabProposal-0929 (2005).
M. Soderberg. ArgoNeuT: A liquid argon time projection chamber test in the NuMIBeamline. arxiv:0910.3433 (2009).
https://doi.org/10.1063/1.3274193
Y. Hayato. A neutrino interaction simulation program library NEUT. Acta Phys. Polon. B 40, 2477 (2009).
A. Bodek, J.L. Ritchie. Further studies of fermi motion effects in lepton scattering from nuclear targets. Phys. Rev. D 24, 1400 (1981).
https://doi.org/10.1103/PhysRevD.24.1400
C.H. Llewellyn Smith. Neutrino reactions at accelerator energies. Phys. Rept. 3, 261 (1972).
https://doi.org/10.1016/0370-1573(72)90010-5
A. Bodek, S. Avvakumov, R. Bradford, H. Budd. Modeling atmospheric neutrino interactions: Duality constrained parameterization of vector and axial nucleon form factors. 30th International Cosmic Ray Conference, arxiv:0708.1827 (2007).
R. Bradford, A. Bodek, H. Budd, J. Arrington. A New parameterization of the nucleon elastic form-factors. Nucl. Phys. B Proc. Suppl. 159, 127 (2006).
https://doi.org/10.1016/j.nuclphysbps.2006.08.028
D. Rein, L.M. Sehgal. Neutrino excitation of baryon resonances and single pion production. Ann. Phys. 133, 79 (1981).
https://doi.org/10.1016/0003-4916(81)90242-6
K.M. Graczyk, D. Kielczewska, P. Przewlocki, J.T. Sobczyk. CA5 axial form factor from bubble chamber experiments. Phys. Rev. D 80, 093001 (2009).
https://doi.org/10.1103/PhysRevD.80.093001
T. Sjostrand, S. Mrenna, P. Skands. PYTHIA 6.4 Physics and Manual. JHEP 05, 026 (2006).
https://doi.org/10.1088/1126-6708/2006/05/026
A. Bodek, U.K. Yang. Higher twist, xi(omega) scaling, and effective LO PDFs for lepton scattering in the few GeV region. J. Phys. G 29, 1899 (2003).
https://doi.org/10.1088/0954-3899/29/8/369
B. Abi et al. (DUNE collaboration). The DUNE far detector interim design report Volume 1: Physics, technology and strategies. FERMILAB-DESIGN-2018-02, arXiv:1807.10334 [physics.ins-det] (2018).
B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report. Vol. II DUNE physics. FERMILAB-PUB-20-025-ND, FERMILAB-DESIGN-2020-02, arXiv: 2002:03005v2 [hep-ex] (2020).
A.M. Ankowski, O. Benhar, P. Coloma, P. Huber, C. Jen, C. Mariani, D. Meloni, E. Vagnoni. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments. Phys. Rev. D 92, 073014 (2015).
https://doi.org/10.1103/PhysRevD.92.073014
U. Mosel, O. Lalakulich, K. Gallmeister. Energy reconstruction in the long-baseline neutrino experiment. Phys. Rev. Lett. 112, 151802 (2014)
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.