A Systematic Study of Proton Decay in Superheavy Elements

Authors

  • M.G. Srinivas Department of Physics, Government First Grade College, Department of Physics, St. Joseph’s college (autonomous), Affiliated to Bharathidasan University
  • H.C. Manjunatha Department of Physics, Government College for Women
  • K.N. Sridhar Department of Physics, Government First Grade College
  • A.C. Raj Department of Physics, St. Joseph’s college (autonomous), Affiliated to Bharathidasan University
  • P.S. Damodara Gupta Department of Physics, Government College for Women

DOI:

https://doi.org/10.15407/ujpe67.9.631

Keywords:

radioactivity, superheavy nuclei, proton decay

Abstract

We have studied the proton decay in almost all superheavy nuclei with atomic number Z = 104–126. We have calculated the energy released during the proton decay (QP), penetration factor (P), normalization factor (F), and the proton decay half-lives. The latter are also longer than that of other decay modes such as the alpha decay and spontaneous fission. The competition of the proton decay with different decay modes reveals that the proton decay is not the dominant decay mode in the superheavy nuclei region. This means that superheavy nuclei are stable against the proton decay.

References

M. Gon¸calves, N. Teruya, O.A.P. Tavares, S.B. Duarte. Two-proton emission half-lives in the effective liquid drop model. Phys. lett. 774, 14 (2017).

https://doi.org/10.1016/j.physletb.2017.09.032

D.S. Delion, R.J. Liotta, R. Wyss. Theories of proton emission. Phys. Reports 424, 113 (2006).

https://doi.org/10.1016/j.physrep.2005.11.001

E. Maglione, L.S. Ferreira, R.J. Liotta. Proton emission from deformed nuclei. Phys. Rev. C 59, R589(R) (1999).

https://doi.org/10.1103/PhysRevC.59.R589

M. DelSanto, Z. Meisel, D. Bazin, A. Becerril et al. beta-delayed proton emission of 69Kr and the 68Se rp-process waiting point. Phys. Lett. B 738, 453 (2014).

https://doi.org/10.1016/j.physletb.2014.10.023

S.A. Alavi,V. Dehghani,M. Sayahi. Calculation of proton radioactivity half-lives. Nucl. Phys. A 977, 49 (2018).

https://doi.org/10.1016/j.nuclphysa.2018.06.001

G. Raciti, M. De Napoli, G. Cardella, et al. Two-proton correlated emission from 18Ne excited states. Nucl. Phys. A 834, 464 (2010).

https://doi.org/10.1016/j.nuclphysa.2010.01.065

D. Baye, E.M. Tursunov. Beta delayed emission of a proton by a one-neutron halo nucleus. Phys. Lett. B 696, 464 (2011).

https://doi.org/10.1016/j.physletb.2010.12.069

W.F. Feix, E.R. Hilf. Nuclear proton emission predictions. Phys. Lett. B 120, 14 (1983).

https://doi.org/10.1016/0370-2693(83)90612-3

M. Anguiano, G. Co, A.M. Lallena. Photo-emission of two protons from nuclei. Nucl. Phys. A 744, 168 (2004).

https://doi.org/10.1016/j.nuclphysa.2004.08.011

R. Coniglione, P. Sapienza, E. Migneco et al. High energy proton emission in heavy ion reactions close to the Fermi energy. Phys. Lett. B 471, 339 (2000).

https://doi.org/10.1016/S0370-2693(99)01383-0

C. Giusti, F.D. Pacati. Two-proton emission induced by electron scattering. Nucl. Phys. A 535, 573 (1991).

https://doi.org/10.1016/0375-9474(91)90476-M

B. Ludewigt, R. Glasow, H. L¨ohner, R. Santo. Proton emission in a-induced reactions at 43 MeV nucleon. Nucl. Phys. A 408, 359 (1983).

https://doi.org/10.1016/0375-9474(83)90587-0

F. Guzm'an, M. Gon¸calves, O.A.P. Tavares et al. Proton radioactivity from proton-rich nuclei. Phys. Rev. C 59, R2339(R) (1999).

https://doi.org/10.1103/PhysRevC.59.R2339

D.S. Delion, R.J. Liotta, R. Wyss. Systematics of proton emission. Phys. Rev. Lett. 96, 072501 (2006).

https://doi.org/10.1103/PhysRevLett.96.072501

J.M. Dong, H.F. Zhang, G. Royer. Proton radioactivity within a generalized liquid drop model. Phys. Rev. C 79, 054330 (2009).

https://doi.org/10.1103/PhysRevC.79.054330

E. Maglione, L.S. Ferreir. Proton emission from 125Pm could be observed. Phys. Rev. C 94, 044317 (2016).

https://doi.org/10.1103/PhysRevC.94.044317

P. Arumugam, L.S. Ferreira, E. Maglione. Proton emission, gamma deformation, and the spin of the isomeric state of 141Ho. Phys. Lett. B 680, 443 (2009).

https://doi.org/10.1016/j.physletb.2009.09.038

S.B. Duarte, O.A.P. Tavares, F. Guzm'an et al. Half-lives for proton emission, alpha decay, cluster radioactivity, and cold fission processes calculated in a unified theoretical framework. Atomic Data and Nuclear Data Tables 80, 235 (2002).

https://doi.org/10.1006/adnd.2002.0881

L.S. Ferreira, E. Maglione, P. Ring. Self-consistent description of proton radioactivity. Phys. Lett. B 701, 508 (2011).

https://doi.org/10.1016/j.physletb.2011.06.026

D.S. Delion. Theory of Particle and Cluster Emission (Springer-Verlag, 2010).

https://doi.org/10.1007/978-3-642-14406-6

https://www-nds.iaea.org/RIPL-3/

M. Kowal, P. Jachimowicz, J. Skalski. Ground State and Saddle Point: masses and deformations for even-even superheavy nuclei with 98 < Z < 126 and 134 < N < 192. arXiv:1203.5013

H.C. Manjunatha, B.M. Chandrika, L. Seenappa. Empirical formula for mass excess of heavy and superheavy nuclei. Mod. Phys. Lett. A 31 (28), 1650162 (2016).

https://doi.org/10.1142/S0217732316501625

G. Royer. Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).

https://doi.org/10.1088/0954-3899/26/8/305

D.N. Poenaru, R.A. Gherghescu, W. Greiner. Single universal curve for cluster radioactivities and α decay. Phys. Rev. C 83, 014601 (2011).

https://doi.org/10.1103/PhysRevC.83.014601

D. Ni, Z. Ren, T. Dong, C. Xu. Unified formula of halflives for a decay and cluster radioactivity. Phys. Rev. C 78, 044310 (2008).

V.Y. Denisov, A.A. Khudenko. α-decay half-lives: Empirical relations. Phys. Rev. C 79 (5), 054614 (2009).

https://doi.org/10.1103/PhysRevC.79.054614

C. Xu, Z. Ren, Y. Guo. Competition between α decay and spontaneous fission for heavy and superheavy nuclei. Phys. Rev. C 78, 044329 (2008).

Y. Qian, Z. Ren, D. Ni. Attempt to probe nuclear charge radii by cluster and proton emissions. Phys. Rev. C 87, 054323 (2013).

https://doi.org/10.1103/PhysRevC.87.054323

H.C. Manjunatha. Comparison of alpha decay with fission for isotopes of superheavy nuclei Z = 124. Intern. J. Modern Phys. E 25, 1650074 (2016).

https://doi.org/10.1142/S0218301316500749

H.C. Manjunatha. Alpha decay properties of superheavy nuclei Z = 126. Nucl. Phys. A 945, 42 (2016).

https://doi.org/10.1016/j.nuclphysa.2015.09.014

H.C. Manjunatha, K.N. Sridhar. Projectile target combination to synthesis superheavy nuclei Z = 126. Nucl. Phys. A 962, 7 (2017).

https://doi.org/10.1016/j.nuclphysa.2017.03.007

H.C. Manjunatha, N. Sowmya. Competition between spontaneous fission ternary fission cluster decay and alpha decay in the super heavy nuclei of Z = 126. Nucl. Phys. A 969, 68 (2018).

https://doi.org/10.1016/j.nuclphysa.2017.09.008

H.C. Manjunatha, N. Sowmya. Decay modes of superheavy nuclei Z = 124. Inte Jou of Mod Phys E 27 (5), 1850041 (2018).

https://doi.org/10.1142/S0218301318500416

N. Sowmya, H.C. Manjunatha. Competition between different decay modes in 279Ds. DAE Symp. Nucl. Phys. 63, 200-201 (2018).

H.C. Manjunatha, K.N. Sridhar, N. Sowmya. Investigations of the synthesis of the superheavy element Z = 122. Phys. Rev. C 98, 024308 (2018).

https://doi.org/10.1103/PhysRevC.98.024308

H.C. Manjunatha, K.N. Sridhar, N. Sowmya. Investigations on 64Ni+ZAnA →Z=104−123 (SHN)A=250−310 reactions. Nucl. Phys. A 987, 382 (2019).

https://doi.org/10.1016/j.nuclphysa.2019.05.006

K.N. Sridhar, H.C. Manjunatha, H.B. Ramalingam. Search for possible fusion reactions to synthesize the superheavy element Z = 121. Phys. Rev. C 98 (6), 064605 (2018).

https://doi.org/10.1103/PhysRevC.98.064605

H.C. Manjunatha, K.N. Sridhar. Investigation to synthesis more isotopes of superheavy nuclei Z = 118. Nucl. Phys. A 975, 136 (2018).

https://doi.org/10.1016/j.nuclphysa.2018.04.009

N. Sowmya, H.C. Manjunatha. Competition between different decay modes of superheavy element Z = 116 and synthesis of possible isotopes. Braz. J. Phys. 49, 874 (2019).

https://doi.org/10.1007/s13538-019-00710-4

N. Sowmya, H.C. Manjunatha. A Study of Binary Fission and Ternary Fission in 232−238U. Bulg. J. Phys. 46, 16 (2019).

G.R. Sridhar, H.C. Manjunatha, N. Sowmya, P.S.D. Gupta, H.B. Ramalingam. Atlas of cluster radioactivity in actinide nuclei. Europ. Phys. J. Plus 135 (3), 291 (2020).

https://doi.org/10.1140/epjp/s13360-020-00302-1

M.G. Srinivas, H.C. Manjunatha, K.N. Sridhar, N. Sowmya, A.C. Raj. Proton decay of actinide nuclei. Nucl. Phys. A 995, 121689 (2020).

https://doi.org/10.1016/j.nuclphysa.2019.121689

N. Sowmya, H.C. Manjunatha, N. Dhananjaya, A.M. Nagaraja. Competition between binary fission, ternary fission, cluster radioactivity and alpha decay of 281Ds. J. Radioanalyt. Nucl. Chem. 323 (3), 1347 (2020).

https://doi.org/10.1007/s10967-019-06706-3

Downloads

Published

2022-12-21

How to Cite

Srinivas, M., Manjunatha, H., Sridhar, K., Raj, A., & Damodara Gupta, P. (2022). A Systematic Study of Proton Decay in Superheavy Elements. Ukrainian Journal of Physics, 67(9), 631. https://doi.org/10.15407/ujpe67.9.631

Issue

Section

Fields and elementary particles