Pion Production in νμ Charged Current Interactions on 40Ar in Deep Underground Neutrino Experiment

Authors

  • R. Devi Department of Physics, University of Jammu
  • B. Potukuchi Department of Physics, University of Jammu

DOI:

https://doi.org/10.15407/ujpe67.5.301

Keywords:

final-state interactions, cross-section, neutrino-nucleon scattering, primary hadronic system

Abstract

Understanding the pion generation and the consequences of final-state interactions (FSI) are critical for the data processing in all neutrino experiments. The energy utilized in modern neutrino researches of the resonance (RES) generation processes contributes significantly to the pion production. If a pion is absorbed in the nuclear matter after its production, the event may become unrecognizable from a quasielastic (QE) scattering process and act as a background. For oscillation experiments, estimating this background is critical, and it necessitates solid theoretical models for both pion generation at the primary vertex and after FSI. The number of pions created after FSI differs greatly from the number produced at the primary vertex due to FSI. Because neutrino detectors can only detect final-state particles, FSI obscures the proper information about particles created at the primary vertex. A detailed study of FSI is required to overcome this problem, which theoretical models incorporated in Monte Carlo (MC) neutrino event generators can provide. They should give theoretical results concerning the neutrino interactions for various researches, acting as a connection among both theoretical models and experimental data. In this paper, we provide simulated events for the pion creation in νμ charge current (CC) interactions on a 40Ar target in the Deep Underground Neutrino Experiment (DUNE) setup for two distinct MC generators: GENIE and NuWro. In comparison to GENIE (v-3.00.06), NuWro (v-19.02.2) is more opaque (less responsive) to the charge exchange and absorption processes; pions are more likely to be absorbed than produced during the intranuclear transport.

References

C. Giganti, S. Lavignac, M. Zito. Neutrino oscillations: the rise of the PMNS paradigm. Prog. Part. Nucl. Phys. 98, 1 (2018).

https://doi.org/10.1016/j.ppnp.2017.10.001

C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, J. Yarba. The GENIE neutrino Monte Carlo generator: Physics and user manual. arXiv:1510.05494 (2015).

https://doi.org/10.2172/1264018

A. Gazizov, M.P. Kowalski. ANIS: High energy neutrino generator for neutrino telescopes. Comput. Phys. Commun. 172, 203 (2005).

https://doi.org/10.1016/j.cpc.2005.03.113

T. Golan, C. Juszczak, J.T. Sobczyk. Effects of final-state interactions in neutrino-nucleus interactions. Phys. Rev. C 86, 015505 (2012).

https://doi.org/10.1103/PhysRevC.86.015505

O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A.B. Larionov, T. Leitner, J. Weil, U. Mosel. Transport-theoretical description of nuclear reactions. Phys. Rept. 512, 1 (2012).

https://doi.org/10.1016/j.physrep.2011.12.001

S. Gardiner. Simulating low-energy neutrino interactions with MARLEY. Comput. Phys. Commun. 269, 108123 (2021).

https://doi.org/10.1016/j.cpc.2021.108123

Y. Hayato. NEUT. Nucl. Phys. B Proc. Suppl. 112, 171 (2002).

https://doi.org/10.1016/S0920-5632(02)01759-0

D. Casper. The nuance neutrino physics simulation, and the future. Nucl. Phys. B Proc. Suppl. 112, 161 (2002).

https://doi.org/10.1016/S0920-5632(02)01756-5

P. Abratenko et al. (MicroBooNE Collaboration). Search for an anomalous excess of charged-current ve interactions without pions in the final state with the MicroBooNE experiment. arXiv:2110.14065 [hep-ex] (2021).

S. Naaz, A. Yadav, J. Singh, R. B. Singh. Effect of final state interactions on neutrino energy reconstruction at DUNE. Nucl. Phys. B 933, 40 (2018).

https://doi.org/10.1016/j.nuclphysb.2018.05.018

K. Abe et al. (T2K Collaboration). Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations. Nature 580, 7803 (2020).

https://doi.org/10.1038/d41586-020-01000-9

M.A. Acero et al. (NOvA Collaboration). First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. Phys. Rev. Lett. 123, 151803 (2019).

B. Abi et al. (DUNE Collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report, Volume I introduction to DUNE. JINST 15, 08, T08008 (2020).

B. Abi et al. (DUNE Collaboration). Deep underground neutrino experiment (DUNE), far detector technical design report, Volume II DUNE Physics, arXiv:2002.03005 [hepex] (2020).

B. Abi et al. (DUNE Collaboration). Experiment simulation configurations approximating DUNE TDR. arXiv:2103.04797 [hep-ex] (2021).

K. Abe et al. (Hyper-Kamiokande Collaboration) Hyperkamiokande design report. arXiv: 1805.04163 [physics.insdet] (2018).

B. Abi et al. (DUNE collaboration). Long-baseline neutrino oscillation physics potential of the DUNE experiment. Eur. Phys. J. C 80, 978 (2020).

http://home.fnal.gov/ ljf26/DUNE2015CDRFluxes/NuMI_Improved_80GV_StandardDP/g4lbne_v3r2p4b_FHC_ND_globes_flux.txt.

K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov. How to sum contributions into the total charged-current neutrinonucleon cross section. arxiv:0511308 [hep-ph] (2005).

M. Antonello, V. Caracciolo, G. Christodoulou, J. Dobson, E. Frank, T. Golan, V. Lee, S. Mania, P. Przewlocki, B. Rossi, D. Stefan, R. Sulej, T. Szeglowski, R. Tacik, T. Wachala. Study of pion production in νμ CC interactions on O16 using different MC generators. Acta Phys. Polon. B 40, 2519 (2009).

C.H. Llewellyn Smith. Neutrino reactions at accelerator energies. Phys. Rept. 3, 261 (1972).

https://doi.org/10.1016/0370-1573(72)90010-5

A. Bodek, S. Avvakumov, R. Bradford, H. Budd. Modeling atmospheric neutrino interactions: Duality constrained parameterization of vector and axial nucleon form factors. In: 30th International Cosmic Ray Conference. arxiv:0708.1827 (2007).

D. Rein, L.M. Sehgal. Neutrino excitation of baryon resonances and single pion production. Ann. Phys. 133, 79 (1981).

https://doi.org/10.1016/0003-4916(81)90242-6

A. Bodek, U.K. Yang. Higher twist, xi(omega) scaling, and effective LO PDFs for lepton scattering in the few GeV region. J. Phys. G 29, 1899 (2003).

https://doi.org/10.1088/0954-3899/29/8/369

D. Rein, L.M. Sehgal. Coherent п0 production in neutrino reactions. Nucl. Phys. B 223, 29 (1983).

https://doi.org/10.1016/0550-3213(83)90090-1

J. Tena-Vidal, C. Andreopoulos, C. Barry, S. Dennis, S. Dytman, H. Gallagher, S. Gardiner, W. Giele, R. Hatcher, O. Hen, I.D. Kakorin, K.S. Kuzmin, A. Meregaglia, V.A. Naumov, A. Papadopoulou, M. Roda, V. Syrotenko, J. Wolcott. Hadronization model tuning in genie v3. Phys. Rev. D 105, 012009 (2022).

https://doi.org/10.1103/PhysRevD.105.012009

Z. Koba, H.B. Nielsen, P. Olesen. Scaling of multiplicity distributions in high-energy hadron collisions. Nucl. Phys. B 40, 317 (1972).

https://doi.org/10.1016/0550-3213(72)90551-2

R. Bradford, A. Bodek, H. Budd, J. Arrington. A new parameterization of the nucleon elastic form-factors. Nucl. Phys. B Proc. Suppl. 159, 127 (2006).

https://doi.org/10.1016/j.nuclphysbps.2006.08.028

K.M. Graczyk, D. Kielczewska, P. Przewlocki, J.T. Sobczyk. C5A axial form factor from bubble chamber experiments Phys. Rev. D 80, 093001 (2009).

https://doi.org/10.1103/PhysRevD.80.093001

T. Sjostrand, S. Mrenna, P.Z. Skands. PYTHIA 6.4 Physics and Manual JHEP 05, 026 (2006).

https://doi.org/10.1088/1126-6708/2006/05/026

Downloads

Published

2022-08-29

How to Cite

Devi, R., & Potukuchi, B. (2022). Pion Production in νμ Charged Current Interactions on 40Ar in Deep Underground Neutrino Experiment. Ukrainian Journal of Physics, 67(5), 301. https://doi.org/10.15407/ujpe67.5.301

Issue

Section

Fields and elementary particles