Status of the Jiangmen Underground Neutrino Observatory

  • M. Schever Institut f¨ur Kernphysik, Forschungszentrum J¨ulich, III. Physikalisches Institut B, RWTH Aachen University
Keywords: antineutrino detector, reactor antineutrinos, supernova neutrinos, proton decay, neutrino mass hierarchy

Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) is a next generation multipurpose antineutrino detector currently under construction in Jiangmen, China. The central detector, containing 20 kton of a liquid scintillator, will be equipped with ∼18 000 20 inch and 25 600 3 inch photomultiplier tubes. Measuring the reactor antineutrinos of two powerplants at a baseline of 53 km with an unprecedented energy resolution of 3%/√︀E(MeV), the main physics goal is to determine the neutrino mass hierarchy within six years of run time with a significance of 3–4q. Additional physics goals are the measurement of solar neutrinos, geoneutrinos, supernova burst neutrinos, the diffuse supernova neutrino background, and the oscillation parameters sin2 O12, Δm212, and |Δm2ee| with a precision <1%, as well as the search for proton decays. The construction is expected to be completed in 2021.

References

Miao He on behalf of the JUNO Collaboration. Double calorimetry system in JUNO. arXiv:1706.08761 (2017).

F. An et al., (JUNO Collaboration). Neutrino physics with JUNO. arXiv:1507.05613 (2016).

M. Grassi, J. Evslin, E. Ciuffoli, X. Zhang. Showering cosmogenic muons in a large liquid scintillator. JHEP 049, 09 (2014). https://doi.org/10.1007/JHEP09(2014)049

M. Grassi, J. Evslin, E. Ciuffoli, X. Zhang. Vetoing cosmogenic muons in a large liquid scintillator. arXiv:1505.05609 (2015). https://doi.org/10.1007/JHEP10(2015)032

C. Genster, M. Schever, L. Ludhova, M. Soiron, A. Stahl, C. Wiebusch. Muon reconstruction with a geometrical model in JUNO. arXiv:1906.01912 (2018). https://doi.org/10.1088/1748-0221/13/03/T03003

A.Yu. Smirnov. The MSW effect and solar neutrinos. arXiv:0305106 (2003).

A. Serenelli, S. Basu, J.W. Ferguson, M. Asplund. New solar composition: The problem with solar models revisited. Astrophys. J. 705, L123 (2009). https://doi.org/10.1088/0004-637X/705/2/L123

M. Agostini et al., (Borexino Collaboration). Comprehensive measurement of pp-chain solar neutrinos. Nature 562, 496 (2018). https://doi.org/10.1038/s41586-018-0624-y

C. Jaupart, S. Labrosse, J.C. Mareschal. Temperatures, heat and energy in the mantle of the Earth. In Treatise on Geophysics, vol. 7: Mantle dynamics, Eds. by D. Bercovici, G. Schubert (Elsevier, 2007). https://doi.org/10.1016/B978-044452748-6/00114-0

T. Adam et. al. The OPERA experiment Target Tracker. Nucl. Inst. & Meth. in Phys. Res. A 577 (3), 523 (2007).

P. Lombardi et. al. Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability. arXiv:1902.05288 (2019).

D.V. Forero, R. Hawkins, P. Huber. The benefits of a near detector for JUNO. arXiv:1710.07378 (2017).

Jun Cao (JUNO Collaboration). Measuring High Resolution Reactor Neutrino Spectrum with JUNO-TAO. Talk presented at the Technical Meeting on Nuclear Data for Anti-neutrino Spectra and Their Applications, IAEA, Vienna, Apr. 23-26 (2019).

Published
2019-09-17
How to Cite
Schever, M. (2019). Status of the Jiangmen Underground Neutrino Observatory. Ukrainian Journal of Physics, 64(7), 635. https://doi.org/10.15407/ujpe64.7.635
Section
New Trends in High-Energy Physics (Conference materials)