Higgs Boson Decay to Lepton Pair and Photon and Possible Non-Hermiticity of the Yukawa Interaction

  • V. A. Kovalchuk NSC “Kharkiv Institute of Physics and Technology”, NAS of Ukraine, V.N. Karazin Kharkiv National University
  • A. Yu. Korchin NSC “Kharkiv Institute of Physics and Technology”, NAS of Ukraine, V.N. Karazin Kharkiv National University
Keywords: Higgs boson, non-Hermitian interaction, decay of a Higgs boson

Abstract

The production of lepton pairs in the Higgs boson decay ℎ → ℓ+ℓ−y is studied. The emphasis is put on the structure of the Higgs boson interaction with fermions. This interaction is chosen as a mixture of the scalar and pseudo-scalar couplings, and, in addition, it is supposed to be non-Hermitian. We study predictions of this model for the observables in the ℎ → ℓ+ℓ−y decay for e+e−, м+м−, and т+т− pairs. The differential decay width and lepton forward-backward asymmetry are calculated as functions of the dilepton invariant mass for several sets of ℎf¯f coupling constants. The influence of the non-Hermitian ℎf¯f interaction on the forward-backward asymmetry is studied, and the large influence of a possible non-Hermiticity of the Higgs interaction with the top quarks on the forward-backward asymmetry for e+e− and м+м− pairs is stressed.

References

G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012).

https://doi.org/10.1016/j.physletb.2012.08.020

S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012).

https://doi.org/10.1016/j.physletb.2012.08.021

V. Khachatryan et al. (CMS Collaboration). Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C 75, 212 (2015).

https://doi.org/10.1140/epjc/s10052-015-3351-7

G. Aad et al. (ATLAS Collaboration). Measurements of the Higgs boson production and decay rates and coupling strengths using collision data at √ = 7 and 8 TeV in the ATLAS experiment. Eur. Phys. J. C 76, 6 (2016).

https://doi.org/10.1140/epjc/s10052-015-3769-y

S. Chatrchyan et al. (CMS Collaboration). Study of the mass and spin-parity of the Higgs boson candidate via its decays to boson pairs. Phys. Rev. Lett. 110, 081803 (2013).

https://doi.org/10.1103/PhysRevLett.110.081803

G. Aad et al. (ATLAS Collaboration). Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120 (2013).

https://doi.org/10.1016/j.physletb.2013.08.026

V. Khachatryan et al. (CMS Collaboration). Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D 92, 012004 (2015).

https://doi.org/10.1103/PhysRevD.92.012004

A.Yu. Korchin, V.A. Kovalchuk. Decay of the Higgs boson to − + and non-Hermiticity of the Yukawa interaction. Phys. Rev. D 94, no. 7, 076003 (2016).

https://doi.org/10.1103/PhysRevD.94.076003

C. Patrignani et al. (Particle Data Group). Review of Particle Physics. Chin. Phys. C 40, 100001 (2016).

https://doi.org/10.1088/1674-1137/40/10/100001

A.Yu. Korchin, V.A. Kovalchuk. Polarization effects in the Higgs boson decay to and test of and symmetries. Phys. Rev. D 88, 036009 (2013).

https://doi.org/10.1103/PhysRevD.88.036009

A.Yu. Korchin, V.A. Kovalchuk. Higgs boson decay to and test of CP and CPT symmetries. Acta Phys. Polon. B 44, No. 11, 2121 (2013).

https://doi.org/10.5506/APhysPolB.44.2121

A.Yu. Korchin, V.A. Kovalchuk. Angular distribution and forward-backward asymmetry of the Higgs boson decay to photon and lepton pair. Eur. Phys. J. C 74, 3141 (2014).

https://doi.org/10.1140/epjc/s10052-014-3141-7

R.F. Streater, A.S. Wightman. PCT, Spin and Statistics and All That (Benjamin, 1964).

S. Heinemeyer, C. Mariotti, G. Passarino, R. Tanaka (Eds.). LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections:3. Higgs Properties, arXiv:1307.1347v1 [hep-ph].

A. Abbasabadi, D. Bowser-Chao, D.A. Dicus, W.W. Repko. Higgs photon associated production at ¯ colliders. Phys. Rev. D 52, 3919 (1995).

https://doi.org/10.1103/PhysRevD.52.3919

A. Abbasabadi, D. Bowser-Chao, D.A. Dicus, W.W. Repko. Radiative Higgs boson decays H → fermion antifermion gamma. Phys. Rev. D 55, 5647 (1997).

https://doi.org/10.1103/PhysRevD.55.5647

G.T. Bodwin, F. Petriello, S. Stoynev, M. Velasco. Higgs boson decays to quarkonia and the ¯ coupling. Phys. Rev. D 88, No. 5, 053003 (2013).

https://doi.org/10.1103/PhysRevD.88.053003

A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev, J. Zupan. An exclusive window onto Higgs Yukawa couplings. Phys. Rev. Lett. 114, No. 10, 101802 (2015).

https://doi.org/10.1103/PhysRevLett.114.101802

D.-N. Gao. A note on Higgs decays into boson and / (ϒ). Phys. Lett. B 737, 366 (2014).

https://doi.org/10.1016/j.physletb.2014.09.019

B. Bhattacharya, A. Datta, D. London. Probing new physics in Higgs couplings to fermions using an angular analysis. Phys. Lett. B 736, 421 (2014).

https://doi.org/10.1016/j.physletb.2014.07.065

A. Kobakhidze, N. Liu, L. Wu, J. Yue. Implications of CPviolating top-Higgs couplings at LHC and Higgs factories. Phys. Rev. D 95, No. 1, 015016 (2017).

https://doi.org/10.1103/PhysRevD.95.015016

S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds.). LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv: 1101.0593v3 [hep-ph]

M. Spira. QCD Effects in Higgs physics. Fortsch. Phys. 46, 203 (1998).

https://doi.org/10.1002/(SICI)1521-3978(199804)46:3<203::AID-PROP203>3.0.CO;2-4

Published
2018-12-13
How to Cite
Kovalchuk, V., & Korchin, A. (2018). Higgs Boson Decay to Lepton Pair and Photon and Possible Non-Hermiticity of the Yukawa Interaction. Ukrainian Journal of Physics, 62(7), 557. Retrieved from https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018651
Section
Fields and elementary particles