Dimerization Degree of Water Molecules, Their Effective Polarizability, and Heat Capacity of Saturated Water Vapor

  • M. P. Malomuzh I.I. Mechnikov National University of Odesa
  • V. M. Makhlaichuk I.I. Mechnikov National University of Odesa

Abstract

The properties of water vapor have been studied. The main attention is focused on the physical nature of the effective polarizability of water vapor and the heat capacity of water vapor at a constant volume, with a proper modeling of those parameters being a good test for a correct description of the dimer concentration in various approaches. Thermal vibrations of water dimers are found to be the main factor governing the specific temperature dependences of those characteristics, and the normal coordinates of dimer vibrations are determined. Fluctuations of the dipole moments of dimers and their contribution to the dielectric permittivity of water vapor are considered in detail. The contribution of the interparticle interaction to the heat capacity is taken into account. By analyzing the effective polarizability and the heat capacity, the temperature dependence of the dimer concentration at the vapor-liquid coexistence curve is determined. The noticeable dimerization in saturated water vapor takes place only at temperatures T/Tc > 0.8, where Tc is the critical temperature.

Keywords saturated water vapor, effective polarizability, heat capacity at a constant volume

References

  1. D. Eisenberg, V. Kauzmann. The Structure and Properties of Water (Oxford Univ. Press, 1969).

  2. K. Burrows, E.R. Pike, J.M. Vaughan. Light-scattering experiments on water vapour at pressures approaching saturation. Nature 260, 131 (1976).
    https://doi.org/10.1038/260131a0

  3. G.E. Ashwell, P.A. Eggett, R. Emery, H.A. Gebbie. Molecular complexity of water vapour and the speed of sound. Nature 247, 196 (1974).
    https://doi.org/10.1038/247196a0

  4. L. A. Curtiss, D. J. Frurip, M. J. Blander. Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity. Chem. Phys. 71, 2703 (1979).
    https://doi.org/10.1063/1.438628

  5. R.A. Bohlander, H.A. Gebbie, G.W.F. Pardoe. Absorption spectrum of water vapor in the region of 23 cm?1 at low temperatures. Nature 228, 156 (1970).
    https://doi.org/10.1038/228156a0

  6. J. Hargrove. Water dimer absorption of visible light. Atmos. Chem. Phys. Discuss. 7, 11123 (2007).
    https://doi.org/10.5194/acpd-7-11123-2007

  7. A.J.L. Shillings, S.M. Ball, M.J. Barber, J. Tennyson, R.L. Jones. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list. Atmos. Chem. Phys. 11, 4273 (2011).
    https://doi.org/10.5194/acp-11-4273-2011

  8. A.A. Vigasin. Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes. J. Quant. Spectr. Rad. Transf. 64, 25 (2000).
    https://doi.org/10.1016/S0022-4073(98)00142-3

  9. A.A. Vigasin, A.I. Pavlyuchko, Y. Jin, S. Ikawa. Density evolution of absorption bandshapes in the water vapor OH-stretching fundamental and overtone: evidence for molecular aggregation. J. Mol. Str. 742, 173 (2005).
    https://doi.org/10.1016/j.molstruc.2004.12.060

  10. C.J. Leforestier.Water dimer equilibrium constant calculation: A quantum formulation including metastable states. Chem. Phys. 140, 074106 (2014).
    https://doi.org/10.1063/1.4865339

  11. J.O. Hirschfelder, F.T. McClure, I.F. Weeks. Second virial coefficients and the forces between complex molecules. J. Chem. Phys. 10, 201 (1942).
    https://doi.org/10.1063/1.1723708

  12. D. Stogrynt, J.O. Hirschfelder. Contribution of bound, metastable, and free molecules to the second virial coefficient and some properties of double molecules. J. Chem. Phys. 31, 6, 1531 (1959).

  13. G. N.I. Clark, D.C. Christopher, J.D. Smith, R.J. Saykally. The structure of ambient water. Mol. Phys. 108, 1415 (2010).
    https://doi.org/10.1080/00268971003762134

  14. Y. Scribano, N. Goldman, R.J. Saykally. Water dimers in the atmosphere III: Equilibrium constant from a flexible potential. J. Phys. Chem. A 110, 5411 (2006).
    https://doi.org/10.1021/jp056759k

  15. N.P. Malomuzh, V.N. Makhlaichuk, S.V. Hrapatiy. Water dimer dipole moment. Russ. J. Phys. Chem. A 88, 1431 (2014).
    https://doi.org/10.1134/S0036024414080172

  16. J.R. Reimers, R.O. Watts. The structure and vibrational spectra of small clusters of water molecules. Chem. Phys. 85, 83 (1984).
    https://doi.org/10.1016/S0301-0104(84)85175-7

  17. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans. In Intermolecular Forces. Edited by B. Pullman (Reidel, 1981), p. XXXXXX.

  18. M.J. Smit, G.C. Groenenboom, P.E.S.Wormer, Ad van der Avoird, R. Bukowski, K. Szalewicz. Vibrations, tunneling, and transition dipole moments in the water dimer. J. Phys. Chem. A 105, 6212 (2001).
    https://doi.org/10.1021/jp004609y

  19. H. Fr?ohlich. Theory of Dielectrics: Dielectric Constant and Dielectric Loss (Clarendon, 1958).

  20. V.L. Kulinskii, N.P. Malomuzh. Dipole fluid as a basic model for the equation of state of ionic liquids in the vicinity of their critical point. Phys. Rev. E 67, 011501 (2003).
    https://doi.org/10.1103/PhysRevE.67.011501

  21. D.P. Fernandez, Y. Mulev, A.R.H. Goodwin, J.M.H. Levelt Sengers. A database for the static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 24, 133 (1995).
    https://doi.org/10.1063/1.555977

  22. N.P. Malomuzh, V.N. Mahlaichuk, S.V. Hrapatiy. Water dimer equilibrium constant of saturated vapor. Russ. J. Phys. Chem. A 88, 1287 (2014).
    https://doi.org/10.1134/S003602441406017X

  23. N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, K.N. Pankratov. Cluster structure of water in accordance with the data on dielectric permittivity and heat capacity. J. Struct. Chem. 54, 205 (2013).
    https://doi.org/10.1134/S0022476613080039

  24. A.I. Fisenko, N.P. Malomuzh, A.V. Oleynik. To what extent are thermodynamic properties of water argon-like? Chem. Phys. Lett. 450, 297 (2008).
    https://doi.org/10.1016/j.cplett.2007.11.036

  25. L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008).
    https://doi.org/10.1016/j.cplett.2008.01.028

  26. L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137, 1 (2008).
    https://doi.org/10.1016/j.molliq.2007.05.003

  27. E.W. Lemmon, M.O. McLinden, D.G. Friend. Thermophysical properties of fluid systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Edited by P.J. Linstrom and W.G. Mallard (National Institute of Standards and Technology, XXXX).

  28. L.D. Landau, E.M. Lifshitz. Statistical Physics (Pergamon, 1980).

  29. M.V. Timofeev. Simulation of the interaction potential between water molecules. Ukr. J. Phys. 61, 893 (2016).
    https://doi.org/10.15407/ujpe61.10.0893

  30. J.O. Hirschfelder, Ch.F. Curtiss, R.B. Bird. Molecular Theory of Gases and Liquids (Wiley, 1954).

  31. S.V. Lishchuk, N.P. Malomuzh, P.V. Mahlaichuk. Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids? Phys. Lett. A 374, 2084 (2010).
    https://doi.org/10.1016/j.physleta.2010.02.070

  32. A.H. Harvey, E.W. Lemmon. Correlation for the second virial coefficient of water. J. Phys. Chem. Ref. Data 33, 369 (2004).
    https://doi.org/10.1063/1.1587731

  33. G.T. Evans, V. Vaida. Aggregation of water molecules: Atmospheric implications. J. Chem. Phys. 113, 6652 (2000).
    https://doi.org/10.1063/1.1310601

  34. Y. Scribano, N. Goldman, R.J. Saykally, C. Leforestier. Water dimers in the atmosphere III: Equilibrium constant from a flexible potential. J. Phys. Chem. A 110, 5411 (2006).
    https://doi.org/10.1021/jp056759k

  35. M.Yu. Tretyakov, D.S. Makarov. Some consequences of high temperature water vapor spectroscopy: Water dimer at equilibrium. J. Chem. Phys. 134, 084306 (2011).
    https://doi.org/10.1063/1.3556606

  36. Moscow Power Engineering Institute, Mathcad Calculation Server.

  37. N.D. Sokolov. Hydrogen bond. Usp. Fiz. Nauk 57, 205 (1955) (in Russian).
    https://doi.org/10.3367/UFNr.0057.195510d.0205

  38. W.L.J. Jorgensen. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. Am. Chem. Soc. 103, 335 (1981).
    https://doi.org/10.1021/ja00392a016

  39. M.D. Dolgushin, V.M. Pinchuk. Theoretical study of the nature of a hydrogen bond by means of comparative calculations. Preprint ITP-76-49R (Inst. for Theor. Phys. of the NASU, 1976) (in Russian).

  40. I.V. Zhyganiuk, M.P. Malomuzh. Physical nature of hydrogen bond. Ukr. J. Phys. 60, 960 (2015).
    https://doi.org/10.15407/ujpe60.09.0960

  41. P.V. Makhlaichuk, M.P. Malomuzh, I.V. Zhyganiuk. Potential in the multipole approximation. Ukr. J. Phys. 58, 278 (2013).
    https://doi.org/10.15407/ujpe58.03.0278

  42. R.C. Dougherty, L.N. Howard. Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties. J. Chem. Phys. 109, 7379 (1998).
    https://doi.org/10.1063/1.477344

  43. National Institute of Standards and Technology, A gateway to the data collections [http://webbook.nist.gov].

  44. P.V. Makhlaichuk, V.N. Makhlaichuk, N.P. Malomuzh. Nature of the kinematic shear viscosity of low-molecular liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577 (2017).
    https://doi.org/10.1016/j.molliq.2016.11.101
Published
2018-03-10
How to Cite
Malomuzh, M., & Makhlaichuk, V. (2018). Dimerization Degree of Water Molecules, Their Effective Polarizability, and Heat Capacity of Saturated Water Vapor. Ukrainian Journal Of Physics, 63(2), 121. doi:10.15407/ujpe63.2.121
Section
Physics of liquids and liquid systems, biophysics and medical physics