Formation of Complexes of Hydrogen Peroxide Molecules with DNA

  • D. V. Piatnytskyi Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • O. O. Zdorevsky Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • S. M. Perepelytsya Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • S. N. Volkov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: DNA, hydrogen peroxide, Bragg peak, ionic therapy

Abstract

A possibility for hydrogen peroxide molecules to form stable complexes with atomic groups in the DNA backbone under the irradiation of the cell medium with high-energy ions has been studied. The energy of complexes is estimated, by taking the electrostatic and van der Waals interactions into account in the framework of the atom-atom potential function method. The interaction with metal counterions, which neutralize the surface charge of a macromolecule under natural conditions, is also taken into consideration. Stable configurations are determined for various complexes consisting of the atoms belonging to a DNA phosphate group, H2O2 and H2O molecules, and a Na+ metal ion. The complexes of hydrogen peroxide molecules with DNA phosphate groups and a counterion are shown to be not less stable than their complexes with water molecules. The attachment of an H2O2 molecule to a phosphate group of the double helix backbone can block the processes of DNA biological functioning and can deactivate the genetic mechanism of a cell.

References

L. Gravitz, Nature 491, S49 (2012). https://doi.org/10.1038/491S49a http://www.ncbi.nlm.nih.gov/pubmed/23320284

A. Brown and S. Herman, Radiol. Oncol. 73, 265 (2004). https://doi.org/10.1016/j.radonc.2004.09.008 http://www.ncbi.nlm.nih.gov/pubmed/15588869

G. Kraft, Prog. Part. Nucl. Phys. 45, S473 (2000). https://doi.org/10.1016/S0146-6410(00)00112-5

H. Suit et al., Radiother. Oncol. 95, 3 (2010). https://doi.org/10.1016/j.radonc.2010.01.015 http://www.ncbi.nlm.nih.gov/pubmed/20185186

C.D. Schlaff, A. Krauze, A. Belard, J.J. O'Connell, and K.A. Camphausen, Radiat. Oncol. 9, 88 (2014). https://doi.org/10.1186/1748-717X-9-88 http://www.ncbi.nlm.nih.gov/pubmed/24679134 http://www.ncbi.nlm.nih.gov/pubmed/PMC4002206

N.V. Timofeev-Resovskii, A.V. Savich, and M.I Shalnov, Introduction to Molecular Radiobiology (Meditsina, Moscow, 1981) (in Russian).

B. Boudaoiffa, P. Cloutier, D. Hunting, M.A. Huels, and L. Sanche, Science 287, 1658 (2000). https://doi.org/10.1126/science.287.5458.1658 8. N. Hamada, J. Radiat. Res., 50, 1 (2009). https://doi.org/10.1269/jrr.08070 http://www.ncbi.nlm.nih.gov/pubmed/18838844

A.V. Solov'yov, E. Surdutovich, E. Scifoni, I. Mishustin, and W. Greiner, Phys. Rev. E 79, 011909 (2009). https://doi.org/10.1103/PhysRevE.79.011909 http://www.ncbi.nlm.nih.gov/pubmed/19257071

A.V. Yakubovich, E. Surdutovich, and A.V. Solov'yov, Nucl. Instrum. Methods B 279, 135 (2012). https://doi.org/10.1016/j.nimb.2011.10.069

E. Surdutovich, A.V. Yakubovich, and A.V. Solov'yov, Sci. Rep. 3, 1289 (2013). https://doi.org/10.1038/srep01289 http://www.ncbi.nlm.nih.gov/pubmed/23411473 http://www.ncbi.nlm.nih.gov/pubmed/PMC3573355

E. Surdutovich and A.V. Solov'yov, J. Phys.: Conf. Ser. 438, 012014 (2013). https://doi.org/10.1088/1742-6596/438/1/012014

I. Pshenichnov, A. Botvina, I. Mishustin, and W. Greiner, Nucl. Instrum. Methods B 268, 604 (2010). https://doi.org/10.1016/j.nimb.2009.12.023

E. Haettner, H. Iwase, and D. Schardt, Radiat. Prot. Dosim. 122, 485 (2006). https://doi.org/10.1093/rpd/ncl402 http://www.ncbi.nlm.nih.gov/pubmed/17145723

J. Soltani-Nabipour, M A. Popovici, and Gh. Cata-Danil, Romanian Rep. Phys. 62, 37 (2010).

B. Pastina and J.A. LaVerne, J. Phys. Chem. A 103, 1592 (1999). https://doi.org/10.1021/jp984433o

S. Le Caer, Water 3, 235 (2011). https://doi.org/10.3390/w3010235

V. Wasselin-Trupin, G. Baldacchino, S. Bouffard, and B. Hickel, Radiat. Phys. Chem. 65, 53 (2002). https://doi.org/10.1016/S0969-806X(01)00682-X

M.S. Kreipl, W. Friedland, and H.G. Paretzke, Radiat Environ Biophys, 48, 11 (2009). https://doi.org/10.1007/s00411-008-0194-8 http://www.ncbi.nlm.nih.gov/pubmed/18949480

S. Uehara and H. Nikjoo, J. Radiat. Res. 47, 69 (2006). https://doi.org/10.1269/jrr.47.69

W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984). https://doi.org/10.1007/978-1-4612-5190-3 http://www.ncbi.nlm.nih.gov/pubmed/PMC557514

V.B. Zhurkin, V.I. Poltev, and V.L. Florentiev, Molek. Biol. 14, 1116 (1980).

V.I. Poltev, and N.V. Shulyupina, Molek. Biol. 18, 1549 (1984).

Brief Chemical Encyclopaedia, Vol. 1 (Sovetskaya Entsiklopediya, Moscow, 1961) (in Russian).

S.M. Perepelytsya and S.N. Volkov, Ukr. J. Phys. 49, 1074 (2004).

S.M. Perepelytsya and S.N. Volkov, Eur. Phys. J. E 24, 261 (2007). https://doi.org/10.1140/epje/i2007-10236-x http://www.ncbi.nlm.nih.gov/pubmed/18060594

Published
2019-01-06
How to Cite
Piatnytskyi, D., Zdorevsky, O., Perepelytsya, S., & Volkov, S. (2019). Formation of Complexes of Hydrogen Peroxide Molecules with DNA. Ukrainian Journal of Physics, 61(3), 219. https://doi.org/10.15407/ujpe61.03.0219
Section
Soft matter