Structure of 14N Nucleus Within a Five-Cluster Model

  • B. E. Grinyuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • D. V. Piatnytskyi Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: cluster structure of 14N nucleus, charge density distribution, pair correlation functions, momentum distributions


The spatial structure of 14N nucleus is studied within a five-particle model (three a-particles plus two nucleons). Using the variational approach with Gaussian bases, the ground-state energy and wave function are calculated for this five-particle system. Two spatial configurations in the ground-state wave function are revealed. The density distributions, pair correlation functions, and the momentum distributions of particles are analyzed and compared with those of the mirror nuclei 14C and 14O.


V.I. Kukulin, V.N. Pomerantsev, Kh.D. Razikov, V.T. Voronchev, G.G. Ryzhikh. Detailed study of the cluster structure of light nuclei in a three-body model (IV). Large space calculation for A = 6 nuclei with realistic nuclear forces. Nucl. Phys. A 586, 151 (1995).

M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen. Bound state properties of Borromean halo nuclei: 6He and 11Li. Phys. Reports 231, 151 (1993).

B.E. Grinyuk, I.V. Simenog. Structure of the 6He nucleus in the three-particle model. Physics of Atomic Nuclei 72, 6 (2009).

Y. Ogawa, K. Arai, Y. Suzuki, K. Varga. Microscopic fourcluster description of 10Be and 10C with the stochastic variational method. Nucl. Phys. A 673, 122 (2000).

B.E. Grinyuk, I.V. Simenog. Structural properties of the 10Be and 10C four-cluster nuclei. Physics of Atomic Nuclei 77, 415 (2014).

B.E. Grinyuk, D.V. Piatnytskyi. Structure of 14C and 14O nuclei calculated in the variational approach. Ukr. J. Phys. 61, 674 (2016).

A.V. Nesterov, F. Arickx, J. Broeckhove, V.S. Vasilevsky. Three-cluster description of properties of light neutronand proton-rich nuclei in the framework of the algebraic version of the resonating group method. Phys. Part. Nucl. 41, 716 (2010).

V.I. Kukulin, V.M. Krasnopol'sky. A stochastic variational method for few-body systems. J. Phys. G: Nucl. Phys. 3, 795 (1977).

Y. Suzuki, K. Varga. Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Springer, 1998) [ISBN: 978-3-540-65152-9].

B.E. Grinyuk, I.V. Simenog. Three-particle structure of the halo nucleus 6Li. Nuclear Physics and Atomic Energy 10, 9 (2009).

B.E. Grinyuk, I.V. Simenog. Structure peculiarities of three- and four-cluster nuclei 6He, 6Li, and 10Be, 10C. Nuclear Physics and Atomic Energy 12, 7 (2011).

B.E. Grinyuk, I.V. Simenog. Asymptotic features of density distributions and form factors for 6Li and 6He nuclei in the three-particle model. Ukr. J. Phys. 55, 369 (2010).

V.G. Neudatchin, V.I. Kukulin, V.L. Korotkikh, V.P. Korennoy. A microscopically substantiated local optical potential for - -scattering. Phys. Lett. B 34, 581 (1971).

V.I. Kukulin, V.G. Neudatchin, Yu.F. Smirnov. Composite particle interaction relevant to the Pauli principle. Fiz. Elem. Chastits At. Yadra ´ 10, 1236 (1979) (Sov. J. Part. Nucl. 10, 492 (1979)).

I. Angeli, K.P. Marinova. Table of experimental nuclear ground state charge radii: An update. Atomic Data and Nuclear Data Tables 99, 69 (2013).

R.H. Helm. Inelastic and elastic scattering of 187-Mev electrons from selected even-even nuclei. Phys. Rev. 104, 1466 (1956).

A.I. Akhiezer, V.B. Berestetskii. Quantum Electrodynamics (Interscience, 1965) [ISBN: 0470018488].

R.F. Frosch, J.S. McCarthy, R.E. Rand, M.R. Yearian. Structure of the He4 nucleus from elastic electron scattering. Phys. Rev. 160, 874 (1967).

P.E. Bosted et al. Measurements of the electric and magnetic form factors of the proton from ¯2 = 1.75 to 8.83 (GeV/) 2 . Phys. Rev. Lett. 68, 3841 (1992).

How to Cite
Grinyuk, B., & Piatnytskyi, D. (2018). Structure of 14N Nucleus Within a Five-Cluster Model. Ukrainian Journal of Physics, 62(10), 835.
Nuclei and nuclear reactions