Dynamics of Ion-Phosphate Lattice of DNA in Left-Handed Double Helix Form

  • S. M. Perepelytsya Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • S. N. Volkov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: left-handed double helix, ion-phosphate lattice, DNA

Abstract

The conformational vibrations of Z-DNA with counterions are studied in the framework of a phenomenological model developed. The structure of a left-handed double helix with counterions neutralizing the negatively charged phosphate groups of DNA is considered as an ion-phosphate lattice. The frequencies and the Raman intensities for the modes of Z-DNA with Na+ and Mg2+ ions are calculated, and the low-frequency Raman spectra are built. At the spectral interval about the frequency 150 cm^-1; a new mode of ion-phosphate vibrations, which characterizes the vibrations of Mg2+ counterions, is found. The results of our calculations show that the intensities of Z-DNA modes are sensitive to the concentration of magnesium counterions. The obtained results describe well the experimental Raman spectra of Z-DNA.

References



  1. W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984). https://doi.org/10.1007/978-1-4612-5190-3

  2. Yu.P. Blagoi, V.L. Galkin, G.O. Gladchenko et al., The Complexes of Nucleic Acids and Metals in Solutions (Naukova Dumka, Kiev, 1991) (in Russian).

  3. V.I. Ivanov, L.E. Minchenkova, A.K. Schyolkina, and A.I. Poletayev, Biopolymers 12, 89 (1973). https://doi.org/10.1002/bip.1973.360120109

  4. V.Ya. Maleev, M.A. Semenov, A.I. Gasan, and V.A. Kashpur, Biofizika 38, 768 (1993).

  5. L.D. Williams and L.J. Maher, Annu. Rev. Biophys. Biomol. Struct. 29, 497 (2000). https://doi.org/10.1146/annurev.biophys.29.1.497

  6. A. Rich and S. Zhang, Nature Reviews 4, 566 (2003). https://doi.org/10.1038/nrg1115

  7. V. Tereshko et al., Nucleic Acids Res. 29, 1208 (2001). https://doi.org/10.1093/nar/29.5.1208

  8. V. Tereshko, G. Minasov, and M. Egli, J. Am. Chem. Soc. 121, 470 (1999). https://doi.org/10.1021/ja9832919

  9. N.V. Hud and M. Polak, Current Opinion Struct. Biol. 11, 293 (2001). https://doi.org/10.1016/S0959-440X(00)00205-0

  10. G.S. Manning, Q. Rev. Biophys. 11, 179 (1978). https://doi.org/10.1017/S0033583500002031

  11. M.D. Frank-Kamenetskii, V.V. Anshelevich, and A.V. Lukashin, Sov. Phys. Usp. 151, 595 (1987). https://doi.org/10.3367/UFNr.0151.198704b.0595

  12. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002). https://doi.org/10.1088/0034-4885/65/11/201

  13. A.A. Kornyshev et al., Rev. Mod. Phys. 79, 943 (2007). https://doi.org/10.1103/RevModPhys.79.943

  14. R. Das, T.T. Mills, L.W. Kwok et al., Phys. Rev. Lett. 90, 188103 (2003). https://doi.org/10.1103/PhysRevLett.90.188103

  15. K. Andersen, R. Das, H.Y. Park et al., Phys. Rev. Lett. 93, 248103 (2004). https://doi.org/10.1103/PhysRevLett.93.248103

  16. K. Andresen, X. Qui, S.A. Pabit et al., Biophys. J. 95, 287 (2008). https://doi.org/10.1529/biophysj.107.123174

  17. X. Qiu, L.W. Kwok, H.Y. Park et al., Phys. Rev. Lett. 101, 228101 (2008). https://doi.org/10.1103/PhysRevLett.101.228101

  18. P. Varnai and K. Zakrzewska, Nucleic Acids Res. 32, 4269 (2004). https://doi.org/10.1093/nar/gkh765

  19. S.Y. Ponomarev, K.M. Thayer, and D.L. Beveridge, Proc. Natl. Acad. Sci. USA 101, 14771 (2004). https://doi.org/10.1073/pnas.0406435101

  20. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1954).

  21. I.A. Heisler, K. Mazur, and S.R. Meech, J. Phys. Chem. 115, 2563 (2011). https://doi.org/10.1021/jp111239v

  22. J.W. Powell, G.S. Edwards, L. Genzel et al., Phys. Rev. A 35, 3929 (1987). https://doi.org/10.1103/PhysRevA.35.3929

  23. O.P. Lamba, A.H.-J. Wang, and G.J. Thomas, jr., Biopolymers 28, 667 (1989). https://doi.org/10.1002/bip.360280210

  24. T. Weidlich, S.M. Lindsay, Qi Rui et al., J. Biomol. Struct. Dyn. 8, 139 (1990). https://doi.org/10.1080/07391102.1990.10507795

  25. T. Weidlich, J.W. Powell, L. Genzel, and A. Rupprecht, Biopolymers 30, 477 (1990). https://doi.org/10.1002/bip.360300324

  26. S.N. Volkov and A.M. Kosevich, Molek. Biol. 21, 797 (1987).

  27. S.N. Volkov and A.M. Kosevich, J. Biomol. Struct. Dyn. 8, 1069 (1991). https://doi.org/10.1080/07391102.1991.10507866

  28. S.N. Volkov, Biopolymers and Cell 7, 40 (1991). https://doi.org/10.7124/bc.0002B0

  29. A.M. Kosevich and S.N. Volkov, Nonlinear Excitations in Biomolecules, edited by M. Peyrard (Springer, New York, 1995), Chapter 9.

  30. S.M. Perepelytsya and S.N. Volkov, Ukr. J. Phys. 49, 1072 (2004); arXiv: q-bio.BM/0412022.

  31. S.M. Perepelytsya and S.N. Volkov, Eur. Phys. J. E 24, 261 (2007). https://doi.org/10.1140/epje/i2007-10236-x

  32. S.M. Perepelytsya and S.N. Volkov, Biofiz. Bull. 23(2), 5 (2009); arXiv: q-bio.BM/0805.0696v1.

  33. S.M. Perepelytsya and S.N. Volkov, Eur. Phys. J. E 31, 201 (2010). CrossRef

  34. S.M. Perepelytsya and S.N. Volkov, Ukr. J. Phys. 55, 1182 (2010).

  35. S.M. Perepelytsya and S.N. Volkov, J. Molec. Liq. 5, 1182 (2011).

  36. T. Weidlich, S.M. Lindsay, W.L. Peticolas, and G.A. Thomas, J. Biomolec. Struct. Dyn. 7, 849 (1990). https://doi.org/10.1002/3527603085

  37. A.M. Kosevich,Theory of Crystal Lattice (Wiley-VCH, Berlin, 1999). https://doi.org/10.1080/07391102.1990.10508528

  38. R.V. Gessner, C.A. Frederick, G.J. Quigley et al., J. Biol. Chem. 264, 7921 (1989).

  39. N.A. Izmailov, Electrochemistry of Solutions (Khimiya, Moscow, 1976) (in Russian).


Published
2018-10-10
How to Cite
Perepelytsya, S., & Volkov, S. (2018). Dynamics of Ion-Phosphate Lattice of DNA in Left-Handed Double Helix Form. Ukrainian Journal of Physics, 58(6), 554. https://doi.org/10.15407/ujpe58.06.0554
Section
Soft matter