Динаміка корельованого випромінювання резонатора лазера, поєднаного з двомодовим тепловим резервуаром

Автор(и)

  • B. Alemu Department of Physics, Adama Science and Technology University
  • Ch. Gashu Department of Physics, Jimma University
  • E. Mosisa Department of Physics, Jimma University
  • T. Abebe Department of Physics, Adama Science and Technology University

DOI:

https://doi.org/10.15407/ujpe66.12.1027

Ключові слова:

стимульоване випромiнювання, статистика фотонiв, квадратурне стиснення, спонтанне випромiнювання

Анотація

Аналiзуються квантовi властивостi променя свiтла iз резонатора когерентно збуджуваного невиродженого трирiвневого лазера, поєднаного з двомодовим тепловим резервуа-ром. Аналiз виконано iз застосуванням нормально впоряд-кованих операторiв шуму теплового резервуара. Обговорюється вплив теплового та спонтанного випромiнювань на динамiку квантових процесiв. Показано, що максимальна ступiнь стиснення у порожнинi на 43% нижче рiвня для вакуумного стану. Бiльше того, наявнiсть теплового випромiнювання викликає зменшення ступеня переплутування.

Посилання

M.O. Scully, M.S. Zubairy. Quantum Optics (Cambridge University Press, 1997).

https://doi.org/10.1017/CBO9780511813993

F. Kassahun. Refind Quantum Analysis of Light (Create Space Independent Publishing Platform, 2014).

K. Fesseha. Three-level laser dynamics with squeezed light. Phys. Rev. A 63, 033811 (2001).

https://doi.org/10.1103/PhysRevA.63.033811

M.O. Scully, M.S. Zubairy. Noise free amplification via the two-photon correlated spontaneous emission laser. Opt. Commun. 66, 303 (1988).

https://doi.org/10.1016/0030-4018(88)90419-1

J. Anwar, M.S. Zubairy. Quantum-statistical properties of noise in a phase-sensitive linear amplifier. Phys. Rev. A 49, 481 (1994).

https://doi.org/10.1103/PhysRevA.49.481

N. Lu, F.X. Zhao, J. Bergou. Nonlinear theory of a twophoton correlated-spontaneous-emission laser: A coherently pumped two-level-two-photon laser. Phys. Rev. A 39, 5189 (1989).

https://doi.org/10.1103/PhysRevA.39.5189

Eyob Alebachew and K. Fesseha. Interaction of a two-level atom with squeezed light. Opt. Commun. 271, 154 (2007).

https://doi.org/10.1016/j.optcom.2006.10.016

Fesseha Kassahun. Stimulated emission by two-level atoms pumped to the upper level. Opt. Commun. 284, 1357 (2011).

https://doi.org/10.1016/j.optcom.2010.11.026

N.A. Ansari, J. Gea-Banacloche, M.S. Zubairy. Phasesensitive amplification in a three-level atomic system. Phys. Rev. A 41, 5179 (1990).

https://doi.org/10.1103/PhysRevA.41.5179

N.A. Ansari. Effect of atomic coherence on the second and higher-order squeezing in a two-photon three-level cascade atomic system. Phys. Rev. A 48, 4686 (1993).

https://doi.org/10.1103/PhysRevA.48.4686

T. Abebe. The quantum analysis of a non-degenerate three-level laser with spontaneous emission and noiseless vacuum reservoir. Ukr. J. Phys. 63 (11), 969 (2018).

https://doi.org/10.15407/ujpe63.11.969

S.M. Barnett, P.M. Radmore. Methods in Theoretical Quantum Optics (Oxford University Press, 1997) [ISBN: 9780198563617].

M.O. Scully, K. Wodkiewicz, M.S. Zubairy, J. Bergou, N. Lu, J. Meyer ter Vehn. Two-photon correlated-spontaneous-emission laser: Quantum noise quenching and squeezing. Phys. Rev. Lett. 60, 1832 (1988).

https://doi.org/10.1103/PhysRevLett.60.1832

T. Abebe. Enhancement of squeezing and entanglement in a non-degenerate three-level cascade laser with coherently driven cavity. Ukr. J. Phys. 63 (8), 733 (2018).

https://doi.org/10.15407/ujpe63.8.733

C.W. Gardiner, P. Zoller. Quantum Noise (Springer Series in Synergetics, 2000)

https://doi.org/10.1007/978-3-662-04103-1

D.F. Walls. Squeezed states of light. Nature 306, 141 (1983).

https://doi.org/10.1038/306141a0

C.M. Caves. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. Rev. Mod. Phys. 52, 341 (1980).

https://doi.org/10.1103/RevModPhys.52.341

A. Abramovici et al. The laser interferometer gravitationalwave observatory. Science 256, 325 (1992).

https://doi.org/10.1126/science.256.5055.325

J. Harms et al. Squeezed-input, optical-spring, signalrecycled gravitational-wave detectors. Phys. Rev. D 68, 042001 (2003).

https://doi.org/10.1103/PhysRevD.68.042001

R. Schnabel et al. Squeezed light and laser interferometric gravitational Wave detectors. Classical Quant. Grav. 25, 1045 (2004).

https://doi.org/10.1088/0264-9381/21/5/099

C.M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981).

https://doi.org/10.1103/PhysRevD.23.1693

M. Xiao et al. Precision measurement beyond the shotnoise limit. Phys. Rev. Lett. 59, 278 (1987).

https://doi.org/10.1103/PhysRevLett.59.278

E.S. Polzik et al. Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020 (1992).

https://doi.org/10.1103/PhysRevLett.68.3020

Y. Yamamoto, H.A. Haus. Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001 (1986).

https://doi.org/10.1103/RevModPhys.58.1001

R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 56, 788 (1986).

https://doi.org/10.1103/PhysRevLett.56.788

K. Fesseha. Three-level laser dynamics with squeezed light. Phys. Rev. A 63, 033811 (2001).

https://doi.org/10.1103/PhysRevA.63.033811

T. Abebe. Coherently driven nondegenerate three-level laser with noiseless vacuum reservoir. Bulg. J. Phys. 45, 357 (2018).

F. Kassahun. Fundamentals of Quantum Optics (Lulu, 2008).

N. Lu, S.Y. Zhu. Quantum theory of a two-mode twophoton correlated spontaneous-emission laser. Phys. Rev. A 41, 2865 (1990).

https://doi.org/10.1103/PhysRevA.41.2865

C.A. Blockely, D.F. Walls. Intensity fluctuations in a frequency down-conversion process with three-level atoms. Phys. Rev. A 43, 5049 (1991).

https://doi.org/10.1103/PhysRevA.43.5049

E. Alebachew. Continuous-variable entanglement in a nondegenerate three-level laser with a parametric oscillator. Phys. Rev. A 76, 023808 (2007).

https://doi.org/10.1103/PhysRevA.76.023808

N.A. Ansari. Theory of a two-mode phase-sensitive amplifie. Phys. Rev. A 46, 1560 (1992).

https://doi.org/10.1103/PhysRevA.46.1560

G.S. Agrawal, G. Adam. Photon distributions for nonclassical fields with coherent components. Phys. Rev. A 39, 6259 (1989).

https://doi.org/10.1103/PhysRevA.39.6259

S.M. Barnett, P.M. Radmore. Methods in Theoretical Quantum Optics (Oxford University Press, 1997).

N. Lu, S.Y. Zhu. Quantum theory of two-photon correlated-spontaneous-emission lasers: Exact atom-field interaction Hamiltonian approach. Phys. Rev. A 40, 5735 (1989).

https://doi.org/10.1103/PhysRevA.40.5735

E. Alebachew. Enhanced squeezing and entanglement in a non-degenerate three-level cascade laser with injected squeezed light. Opt. Commun. 280, 133 (2007).

https://doi.org/10.1016/j.optcom.2007.08.017

S. Tesfa. Dynamics of the cavity radiation of a correlated emission laser initially seeded with a thermal light. Phys. Scr. 84, 045403 (2011).

https://doi.org/10.1088/0031-8949/84/04/045403

S. Tesfa. Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816 (2006). https://doi.org/10.1103/PhysRevA.74.043816

B.C. Sanders. Entangled coherent states. Phys. Rev. A 45, 6811 (1992). https://doi.org/10.1103/PhysRevA.45.6811

A. Einstein, B. Podolsky, R. Rosen. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777

L.M. Duan, G. Giedke, J.J. Cirac, P. Zoller. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. A 84, 2722 (2000). https://doi.org/10.1103/PhysRevLett.84.2722

Downloads

Опубліковано

2021-12-20

Як цитувати

Alemu, B., Gashu, C., Mosisa, E., & Abebe, T. (2021). Динаміка корельованого випромінювання резонатора лазера, поєднаного з двомодовим тепловим резервуаром. Український фізичний журнал, 66(12), 1027. https://doi.org/10.15407/ujpe66.12.1027

Номер

Розділ

Оптика, атоми і молекули

Статті цього автора (авторів), які найбільше читають