Нанофiзика та антивiрусна терапiя

Автор(и)

  • V. Lysenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. Lozovski V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine, Institute of High Technologies, Taras Shevchenko National University of Kyiv
  • M. Spivak D.K. Zabolotnyi Institute of Microbiology and Virology, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.01.0077

Ключові слова:

плазмон-поляритон, система наночастинка–вiрус

Анотація

Запропоновано новий механiзм взаємодiї вiрусiв з наночастинками, що ґрунтується на притаманному тiльки нанооб’єктам ефектi пiдсилення локального поля, який може проявлятись у системi наночастинка–вiрус. Основною iдеєю запропонованого механiзму є розгляд дiї завжди притаманного будь-якiй фiзичнiй системi поля вакуумних флуктуацiй. Цей механiзм є унiверсальним. Вiн не залежить вiд деталей структури наночастинки та вiрусу, що пiдтверджують численнi експерименти, проведенi як авторами роботи, так i iншими науковими групами. Обговорено також новий метод очищення бiорiдин вiд нанооб’єктiв – наночастинок та вiрусiв. Метод ґрунтується на вибiрковiй взаємодiї нанооб’єктiв з наноструктурованою поверхнею, вздовж якої поширюється поверхневий плазмон-поляритон, або з системою нанониток, що знаходяться в умовах збудження на них локального плазмон-поляритона. На основi запропонованого методу послаблення вiрусної активностi пiд дiєю суспензiї наночастинок, розроблено i експериментально перевiрено новий ефективний спосiб отримання людського лейкоцитарного iнтерферону.

Посилання

<ol>
<li> H.-W. Fink and Ch. Schonenberger, Nature 398, 407 (1999).&nbsp;<a href="https://doi.org/10.1038/18855">https://doi.org/10.1038/18855</a></li>
<li> D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000).&nbsp;<a href="https://doi.org/10.1038/35001029">https://doi.org/10.1038/35001029</a></li>
<li> O.V. Salata, J. Nanobiotechnol. 2, 3 (2004).</li>
<li> H.-E. Schaefer, Nanoscience. The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, Berlin, 2010).</li>
<li> Yu.A. Berlin, A.L. Burin, and M.A. Ratner, Super-lattices Microstruct. 28, 241 (2000).&nbsp;<a href="https://doi.org/10.1006/spmi.2000.0915">https://doi.org/10.1006/spmi.2000.0915</a></li>
<li> S. Brasselet, Adv. Opt. Photon. 3, 205 (2011).&nbsp;<a href="https://doi.org/10.1364/AOP.3.000205">https://doi.org/10.1364/AOP.3.000205</a></li>
<li> J.P. Jagtap, T.H. Jadhav, and D. Utpal, Scient. J. Crop. Sci. 1, 9 (2012).</li>
<li> T.A. Delchar, Physics in Medical Diagnostics (Springer, Berlin, 1997).</li>
<li> Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, edited by V.M. Agranovich and D.L. Mills (Amsterdam, North-Holland, 1982).</li>
<li> J. Davies, Nanobiology 3, 5 (1994).</li>
<li> J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).&nbsp;<a href="https://doi.org/10.1007/s00216-003-2101-0">https://doi.org/10.1007/s00216-003-2101-0</a></li>
<li> N.F. Starodub, T.L. Dibrova, Yu.M. Shyrshov, and K.V. Kostyukevich, Ukr. Biokim. Zh. 71, 33 (1999).</li>
<li> Optical Sensors. Industrial Enviromental and Diagnostic Applications, edited by R. Narayanaswamy and O.S. Wolfbeis (Springer, Berlin, 2004).</li>
<li> B. Della Ventura, L. Schiavo, C. Altucci, R. Esposito, and R. Velotta, Biomed. Opt. Express 2, 3223 (2011).&nbsp;<a href="https://doi.org/10.1364/BOE.2.003223">https://doi.org/10.1364/BOE.2.003223</a></li>
<li> C. Chen, J. Peng, H. Xia, Q. Wu, L. Zeng, H. Xu, H. Tang, Z. Zhang, X. Zhu, D. Pang, and Y. Li, Nanotechnology 21, 095101 (2010).&nbsp;<a href="https://doi.org/10.1088/0957-4484/21/9/095101">https://doi.org/10.1088/0957-4484/21/9/095101</a></li>
<li> C.-C. Youa, A. Chompoosora, and V.M. Rotello, Nano Today 2, 34 (2007).&nbsp;<a href="https://doi.org/10.1016/S1748-0132(07)70085-3">https://doi.org/10.1016/S1748-0132(07)70085-3</a></li>
<li> G.A. Silva, Nature Reviews Neuroscience 7, 65 (2006).&nbsp;<a href="https://doi.org/10.1038/nrn1827">https://doi.org/10.1038/nrn1827</a></li>
<li> D.A. Giljohann, D.S. Seferos,W.L. Daniel, M.D. Massich, P.C. Patel, and C.A. Mirkin, Angew. Chem. 49, 3280 (2010).&nbsp;<a href="https://doi.org/10.1002/anie.200904359">https://doi.org/10.1002/anie.200904359</a></li>
<li> Nanoparticles in Biology and Medicine, edited by M. Soloviev (Humana Press, New York, 2012).</li>
<li> L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, and O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008).&nbsp;<a href="https://doi.org/10.1038/sj.clpt.6100400">https://doi.org/10.1038/sj.clpt.6100400</a></li>
<li> M. Singh, S. Singh, S. Prasad, and I.S. Gamhir, Digest J. Nanomater. Biostruct. 3, 115 (2008).</li>
<li> J.M. Provenzale and G.A. Silva, Am. J. Neuroradiol. 30, 1293 (2009).&nbsp;<a href="https://doi.org/10.3174/ajnr.A1590">https://doi.org/10.3174/ajnr.A1590</a></li>
<li> A.Z. Wang, F. Gu, L. Zhang, J.M. Chan, A. Radovich-Moreno, M.R. Shaikh, and O.C. Farokhzad, Expert Opin. Biol. Ther. 8, 1063 (2008).&nbsp;<a href="https://doi.org/10.1517/14712598.8.8.1063">https://doi.org/10.1517/14712598.8.8.1063</a></li>
<li> I.L. Medintz1, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Nature Mater. 4, 435 (2005).</li>
<li> B.H. Bairamov, V.V. Toporov, F.B. Bayramov, M. Petukhov, E. Glazunov, A.B. Shchegolev, Y. Li, D. Ramadurai, P. Shi, M. Dutta, M.A. Stroscio, and G. Irmer, Mol. J. Phys. Sci. 5, 320 (2006).</li>
<li> W.H. De Jong and P.J.A. Borm, Int. J. Nanomed. 3, 133 (2008).&nbsp;<a href="https://doi.org/10.2147/IJN.S596">https://doi.org/10.2147/IJN.S596</a></li>
<li> J. Li, X. Ni, and K.W. Leong, J. Biomed. Mater. Res. A 65, 196 (2003).&nbsp;<a href="https://doi.org/10.1002/jbm.a.10444">https://doi.org/10.1002/jbm.a.10444</a></li>
<li> A. Blanco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005).&nbsp;<a href="https://doi.org/10.1016/j.cbpa.2005.10.005">https://doi.org/10.1016/j.cbpa.2005.10.005</a></li>
<li> N.A. Mazurkova, Y.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel'nyi, and E.I. Ryabchikova, Ross. Nanotekhnol. 5, 417 (2010).&nbsp;<a href="https://doi.org/10.1134/S1995078010050174">https://doi.org/10.1134/S1995078010050174</a></li>
<li> Y. Fujimori, T. Sato, T. Hayata, T. Nagao, M. Nakayama, T. Nakayama, R. Sugamata, and K. Suzuki, Appl. Environ. Microbiol. 78, 951 (2012).&nbsp;<a href="https://doi.org/10.1128/AEM.06284-11">https://doi.org/10.1128/AEM.06284-11</a></li>
<li> I.O. Shmarakov, M.M. Marchenko, and M.Ya. Spivak, Basic Virology (Chernivtsi Nat. Univ., Chernivtsi, 2011) (in Ukrainian).</li>
<li> E.V. Koonin, T.G. Senkevich, and V.V. Dolja, Biol. Direct. 1, 29 (2006).&nbsp;<a href="https://doi.org/10.1186/1745-6150-1-29">https://doi.org/10.1186/1745-6150-1-29</a></li>
<li> S.J. Flint, I.W. Enquist, R.M. Krug, V.R. Racaniello, and A.M. Skalka, Principles of Virology. Molecular biology, Pathogenetics, and Control (ASM Press, Washington, DC, 1999).</li>
<li> W.H. Roos, R. Bruinsma, and G.J.L. Wuite, Nature Phys. 6, 733 (2010).</li>
<li> P. Wild, Meth. Cell Biol. 88, 497 (2008).&nbsp;<a href="https://doi.org/10.1016/S0091-679X(08)00425-1">https://doi.org/10.1016/S0091-679X(08)00425-1</a></li>
<li> Ch. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1999).&nbsp;<a href="https://doi.org/10.1088/0034-4885/59/5/002">https://doi.org/10.1088/0034-4885/59/5/002</a></li>
<li> A. Lewis, H. Taha, A. Strinkovski, A. Manevich, A. Khatchatouriants, R. Dekhter, and E. Ammanann, Nature Biotech. 21, 1378 (2003).&nbsp;<a href="https://doi.org/10.1038/nbt898">https://doi.org/10.1038/nbt898</a></li>
<li> E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Krarschmer, Biophys. J. 49, 269 (1986).&nbsp;<a href="https://doi.org/10.1016/S0006-3495(86)83640-2">https://doi.org/10.1016/S0006-3495(86)83640-2</a></li>
<li> B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, and D.W. Pohl, J. Chem. Phys. 112, 7761 (2000).&nbsp;<a href="https://doi.org/10.1063/1.481382">https://doi.org/10.1063/1.481382</a></li>
<li> V.Z. Lozovski, J. Beermann, and S.I. Bozhevolnyi, Phys. Rev. B 75, 045438 (2007).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.75.045438">https://doi.org/10.1103/PhysRevB.75.045438</a></li>
<li> A. Zybin, Y.A. Kuritsyn, E.L. Gurevich, V.V. Temchura, K. Uberla, and K. Niemax, Plasmonics 5, 31 (2010).&nbsp;<a href="https://doi.org/10.1007/s11468-009-9111-5">https://doi.org/10.1007/s11468-009-9111-5</a></li>
<li> S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, Proc. Nat. Acad. Sci. USA 107, 16028 (2010).&nbsp;<a href="https://doi.org/10.1073/pnas.1005264107">https://doi.org/10.1073/pnas.1005264107</a></li>
<li> V. Lozovski, J Comput. Theor. Nanosci. 9, 859 (2012).&nbsp;<a href="https://doi.org/10.1166/jctn.2012.2107">https://doi.org/10.1166/jctn.2012.2107</a></li>
<li> Ch. Girard, Ch. Joachim, and S. Gauthier, Rep. Prog. Phys. 63, 893 (2000).&nbsp;<a href="https://doi.org/10.1088/0034-4885/63/6/202">https://doi.org/10.1088/0034-4885/63/6/202</a></li>
<li> M. Xiao, S. Bozhevolnyi, and O. Keller, Appl. Phys. A 62, 115 (1996).</li>
<li> C.-Z. Wu, X.-B. Mao, Z.-F. Xu, and H.-N. Ye, Optoelectr. Lett. 3, 289 (2007).&nbsp;<a href="https://doi.org/10.1007/s11801-007-6091-6">https://doi.org/10.1007/s11801-007-6091-6</a></li>
<li> V. Lozovski, J. Comput. Theor. Nanosci. 7, 2077 (2010).&nbsp;<a href="https://doi.org/10.1166/jctn.2010.1588">https://doi.org/10.1166/jctn.2010.1588</a></li>
<li> V. Lozovski and V. Piatnytsia, in Proceedings of the International Conference of Young Scientists on Modern Problems of Theoretical Physocs (Bogolubov Inst. Theor. Phys. of the NAS of Ukraine, Kyiv, 2011), p. 30.</li>
<li> O. Keller, Phys. Rep. 268, 85 (1996).&nbsp;<a href="https://doi.org/10.1016/0370-1573(95)00059-3">https://doi.org/10.1016/0370-1573(95)00059-3</a></li>
<li> Yu.S. Barash and V.L. Ginzburg, Usp. Fiz. Nauk 143, 345 (1984).&nbsp;<a href="https://doi.org/10.3367/UFNr.0143.198407a.0345">https://doi.org/10.3367/UFNr.0143.198407a.0345</a></li>
<li> Yu.S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) (in Russian).</li>
<li> V. Lozovski, V. Lysenko, V. Pyatnitsia, M. Spivak, Semicond. Phys. Quant. Electr. Optoelectr. 14, 489 (2011).&nbsp;<a href="https://doi.org/10.15407/spqeo14.04.489">https://doi.org/10.15407/spqeo14.04.489</a></li>
<li> Preclinical Drug Studies. Methodical Guide, edited by O.V. Stefanov (Ministry of Health of Ukraine, Kyiv, 2001) (in Ukrainian).</li>
<li> A. Bouhelier, Microsc. Res. Techn. 69, 563 (2006).&nbsp;<a href="https://doi.org/10.1002/jemt.20328">https://doi.org/10.1002/jemt.20328</a></li>
<li> A.V. Goncharenkoa, H.-Ch. Changa, and J.-K. Wang, Ultramicroscopy 107, 151 (2007).&nbsp;<a href="https://doi.org/10.1016/j.ultramic.2006.06.004">https://doi.org/10.1016/j.ultramic.2006.06.004</a></li>
<li> B.M. Ross and L.P. Lee, Nanotechnology 19, 2752001 (2008).&nbsp;<a href="https://doi.org/10.1088/0957-4484/19/27/275201">https://doi.org/10.1088/0957-4484/19/27/275201</a></li>
<li> S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, G. Lacroix, and P. Hoet, Part. Fibre Toxicol. 6, 14 (2009).&nbsp;<a href="https://doi.org/10.1186/1743-8977-6-14">https://doi.org/10.1186/1743-8977-6-14</a></li>
<li> V. Lozovski, V. Lysenko, M. Spivak, and V. Sterligov, Semicond. Phys. Quant. Electr. Optoelectr. 15, 80 (2012).&nbsp;<a href="https://doi.org/10.15407/spqeo15.01.080">https://doi.org/10.15407/spqeo15.01.080</a></li>
<li> V.A. Sterligov, Y. Men, and P.M. Lytvyn, Opt. Express 18, 43 (2010).&nbsp;<a href="https://doi.org/10.1364/OE.18.000043">https://doi.org/10.1364/OE.18.000043</a></li>
<li> T.A. Leskova, A.A. Maradudin, and W. Zierau, Opt. Commun. 249, 23 (2005).&nbsp;<a href="https://doi.org/10.1016/j.optcom.2005.01.014">https://doi.org/10.1016/j.optcom.2005.01.014</a></li>
<li> V. Lozovski, S. Schrader, and A. Tsykhonya, Opt. Commun. 282, 3257 (2009).&nbsp;<a href="https://doi.org/10.1016/j.optcom.2009.05.032">https://doi.org/10.1016/j.optcom.2009.05.032</a></li>
<li> A.A. Maradudin and D.L. Mills, Phys. Rev. B 11, 1392 (1975).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.11.1392">https://doi.org/10.1103/PhysRevB.11.1392</a></li>
<li> J.M. Elson and R.H. Ritchie, Phys. Status Solidi B 62, 461 (1974).&nbsp;<a href="https://doi.org/10.1002/pssb.2220620215">https://doi.org/10.1002/pssb.2220620215</a></li>
<li> A.A. Abrikosov, L.P. Gor'kov, and I.E. Dzyaloshinskij, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, N.J., 1963).</li>
<li> S. Bozhevolnyi and A. Evlyukhin, Surf. Sci. 590, 173 (2005).&nbsp;<a href="https://doi.org/10.1016/j.susc.2005.06.010">https://doi.org/10.1016/j.susc.2005.06.010</a></li>
<li> A.D. Jaghjaian, Proc. IEEE 68, 248 (1980).&nbsp;<a href="https://doi.org/10.1109/PROC.1980.11620">https://doi.org/10.1109/PROC.1980.11620</a></li>
<li> M.V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).&nbsp;<a href="https://doi.org/10.1080/09500349608232876">https://doi.org/10.1080/09500349608232876</a></li>
<li> Human Leukocyte Interferon Manufacture Regulations No. 302-82 (1982).</li>
<li> Russian Federation Patent No. 2080873, date of priority 27.12.1993.</li>
<li> Russian Federation Patent No. 2066188, date of priority 13.04.1993.</li>
<li> Russian Federation Patent No. 2140284, date of priority 06.07.1998.</li>
<li> N.Ya. Spivak, L.N. Lazarenko, and O.N. Mikhailenko, Interferon and the System of Mononuclear Phagocytes (Ukrainian Phytosociological Center, Kyiv, 2002) (in Russian).</li>
<li> B.J. Marquis, Z. Liu, K.L. Braun, and C.L. Haynes, Analyst 136, 3478 (2011).&nbsp;<a href="https://doi.org/10.1039/C0AN00785D">https://doi.org/10.1039/C0AN00785D</a></li>
<li> B.J. Kirby and E.F. Hasselbrink, in Electorpheresis in Practice, Electrophoresis, Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separations (Wiley, Weinheim, 2004), Vol. 25, p. 187.</li>
<li> Y. Kim, R.C. Jonson, J. Li, J.T. Hupp, and G.C. Schatz, Chem. Phys. Lett. 352, 421 (2002).&nbsp;<a href="https://doi.org/10.1016/S0009-2614(01)01506-8">https://doi.org/10.1016/S0009-2614(01)01506-8</a></li>
<li> P.K. Jain, K. S.Lee, I.H. EI-Sayed, and M.A. EI-Sayed, J. Phys. Chem. B 110, 7238 (2006).&nbsp;<a href="https://doi.org/10.1021/jp057170o">https://doi.org/10.1021/jp057170o</a></li>
<li> V. Lozovski, V. Lysenko, V. Piatnytsia, O. Scherbakov, N. Zholobak, and M. Spivak, J. Bionanosci. 6, 109 (2012).</li>
</ol>

Опубліковано

2018-10-05

Як цитувати

Lysenko, V., Lozovski, V., & Spivak, M. (2018). Нанофiзика та антивiрусна терапiя. Український фізичний журнал, 58(1), 77. https://doi.org/10.15407/ujpe58.01.0077

Номер

Розділ

Наносистеми