Semidiscrete Integrable Nonlinear Schrӧdinger System with Background-Controlled Intersite Resonant Coupling. Short Summary of Key Properties
DOI:
https://doi.org/10.15407/ujpe63.3.220Keywords:
nonlinear lattice, integrable system, soliton, conservation laws, symmetry breaking, canonical field variablesAbstract
The most featured items characterizing the semidiscrete nonlinear Schr¨odinger system with background-controlled intersite resonant coupling are summarized. The system is shown to be integrable in the Lax sense that makes it possible to obtain its soliton solutions in the framework of a properly parametrized dressing procedure based on the Darboux transformation accompanied by the implicit form of B¨acklund transformation. In addition, the system integrability inspires an infinite hierarchy of local conservation laws, some of which were found explicitly in the framework of the generalized recursive approach. The system consists of two basic dynamic subsystems and one concomitant subsystem, and its dynamics is embedded into the Hamiltonian formulation accompanied by the highly nonstandard Poisson structure. The nonzero background level of concomitant fields mediates the appearance of an additional type of the intersite resonant coupling. As a consequence, it establishes the triangular-lattice-ribbon spatial arrangement of location sites for the basic field excitations. At tuning the main background parameter, we are able to switch system’s dynamics between two essentially different regimes separated by the critical point. The physical implications of system’s criticality become evident after a rather sophisticated procedure of canonization of basic field variables. There are two variants to standardize the system equal in their rights. Each variant is realizable in the form of two nonequivalent canonical subsystems. The broken symmetry between canonical subsystems gives rise to the crossover effect in the nature of excited states. Thus, in the under-critical region, the system supports the bright excitations in both subsystems; while, in the over-critical region, one of the subsystems converts into the subsystem of dark excitations.
References
<li>M.J. Ablowitz, J.F. Ladik. Nonlinear differential-difference equations. J. Math. Phys. 16, 598 (1975).
<a href="https://doi.org/10.1063/1.522558">https://doi.org/10.1063/1.522558</a>
</li>
<li>M.J. Ablowitz, J.F. Ladik. Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17, 1011 (1976).
<a href="https://doi.org/10.1063/1.523009">https://doi.org/10.1063/1.523009</a>
</li>
<li>M.J. Ablowitz, Y. Ohta, A.D. Trubatch. On discretizations of the vector nonlinear Schr?odinger equation. Phys. Lett. A 253, 287 (1999).
<a href="https://doi.org/10.1016/S0375-9601(99)00048-1">https://doi.org/10.1016/S0375-9601(99)00048-1</a>
</li>
<li>M.J. Ablowitz, B. Prinari, A.D. Trubatch. Discrete and Continuous Nonlinear Schr?odinger Systems (Cambridge Univ. Press, 2004).
</li>
<li>M.J. Ablowitz, G. Biondini, B. Prinari. Inverse scattering transform for the integrable discrete nonlinear Schr?odinger equation with nonvanishing boundary conditions. Inverse Problems 23, 1711 (2007).
<a href="https://doi.org/10.1088/0266-5611/23/4/021">https://doi.org/10.1088/0266-5611/23/4/021</a>
</li>
<li>L.S. Brizhik, B.M.A.G. Piette, W.J. Zakrzewski. Donor-acceptor electron transport mediated by solitons. Phys. Rev. E 90, 052915 (2014).
<a href="https://doi.org/10.1103/PhysRevE.90.052915">https://doi.org/10.1103/PhysRevE.90.052915</a>
</li>
<li>D.N. Christodoulides, R.I. Joseph. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794 (1988).
<a href="https://doi.org/10.1364/OL.13.000794">https://doi.org/10.1364/OL.13.000794</a>
</li>
<li>A.S. Davydov. Theory of Molecular Excitons (Plenum Press, 1971).
<a href="https://doi.org/10.1007/978-1-4899-5169-4">https://doi.org/10.1007/978-1-4899-5169-4</a>
</li>
<li>A.S. Davydov, A.A. Eremko, A.I. Sergienko. Solitons in a-helix protein molecules. Ukr. J. Phys. 23, 983 (1978).
</li>
<li> A.S. Davydov. Solitons in Molecular Systems (Kluwer Academic, 1991).
<a href="https://doi.org/10.1007/978-94-011-3340-1">https://doi.org/10.1007/978-94-011-3340-1</a>
</li>
<li> M. Eliashvili, G.I. Japaridze, G. Tsitsishvili, G. Tukhashvili. Edge states in 2D lattices with hopping anisotropy and Chebyshev polynomials. J. Phys. Soc. Japan 83, 044706 (2014).
<a href="https://doi.org/10.7566/JPSJ.83.044706">https://doi.org/10.7566/JPSJ.83.044706</a>
</li>
<li> I.L. Garanovich, S. Longhi, A.A. Sukhorukov, Yu.S. Kivshar. Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep. 518, 1 (2012).
<a href="https://doi.org/10.1016/j.physrep.2012.03.005">https://doi.org/10.1016/j.physrep.2012.03.005</a>
</li>
<li> V.S. Gerdzhikov, M.I. Ivanov. Hamiltonian structure of multicomponent nonliner Schr?odinger equations in difference form. Theor. Math. Phys. 52, 676 (1982).
<a href="https://doi.org/10.1007/BF01027788">https://doi.org/10.1007/BF01027788</a>
</li>
<li> L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877 (2009).
<a href="https://doi.org/10.1038/nature07919">https://doi.org/10.1038/nature07919</a>
</li>
<li> Yu.S. Kivshar, B. Luther-Davies. Dark optical solitons: Physics and applications. Phys. Rep. 298, 81 (1998).
<a href="https://doi.org/10.1016/S0370-1573(97)00073-2">https://doi.org/10.1016/S0370-1573(97)00073-2</a>
</li>
<li> D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872 (2009).
<a href="https://doi.org/10.1038/nature07872">https://doi.org/10.1038/nature07872</a>
</li>
<li> P.P. Kulish. Quantum difference nonlinear Schr?odinger equation. Lett. Math. Phys. 5, 191 (1981).
<a href="https://doi.org/10.1007/BF00420698">https://doi.org/10.1007/BF00420698</a>
</li>
<li> R.K.F. Lee, B.J. Cox, J.M. Hill. An exact polyhedral model for boron nanotubes. J. Phys. A: Math. Theor. 42, 065204 (2009).
<a href="https://doi.org/10.1088/1751-8113/42/6/065204">https://doi.org/10.1088/1751-8113/42/6/065204</a>
</li>
<li> P. Marqui’e, J.M. Bilbault, M. Remoissenet. Nonlinear Schr?odinger models and modulational instability in real electrical lattices. Physica D 87, 371 (1995).
<a href="https://doi.org/10.1016/0167-2789(95)00162-W">https://doi.org/10.1016/0167-2789(95)00162-W</a>
</li>
<li> A. Narita, X. Feng, Y. Hernandez, S.A. Jensen, M. Bonn, H. Yang, I.A. Verzhbitskiy, C. Casiraghi, M.R. Hansen, A.H.R. Koch, G. Fytas, O. Ivasenko, B. Li, K.S. Mali, T. Balandina, S. Mahesh, S. De Feyter, K. M?ullen. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chemistry 6, 126 (2014).
<a href="https://doi.org/10.1038/nchem.1819">https://doi.org/10.1038/nchem.1819</a>
</li>
<li> A.C. Newell. Solitons in Mathematics and Physics (SIAM Press, 1985).
<a href="https://doi.org/10.1137/1.9781611970227">https://doi.org/10.1137/1.9781611970227</a>
</li>
<li> R. Peierls. Zur theorie des diamagnetismus von leitungselektronen. Z. Phys. 80, 763 (1933).
<a href="https://doi.org/10.1007/BF01342591">https://doi.org/10.1007/BF01342591</a>
</li>
<li> A.C. Scott. Dynamics of Davydov solitons. Phys. Rev. A 26, 578 (1982).
<a href="https://doi.org/10.1103/PhysRevA.26.578">https://doi.org/10.1103/PhysRevA.26.578</a>
</li>
<li> L.D. Faddeev and L.A. Takhtajan. Hamiltonian Methods in the Theory of Solitons (Springer, 1987).
<a href="https://doi.org/10.1007/978-3-540-69969-9">https://doi.org/10.1007/978-3-540-69969-9</a>
</li>
<li> Y. Tang, J. Cao, X. Liu, Y. Sun. Symplectic methods for the Ablowitz–Ladik discrete nonlinear Schr?odinger equation. J. Phys. A: Math. Theor. 40, 2425 (2007).
<a href="https://doi.org/10.1088/1751-8113/40/10/012">https://doi.org/10.1088/1751-8113/40/10/012</a>
</li>
<li> T. Tsuchida, H. Ujino, M. Wadati. Integrable semidiscretization of the coupled nonlinear Schr?odinger equations. J. Phys. A: Math. Gen. 32, 2239 (1999).
<a href="https://doi.org/10.1088/0305-4470/32/11/016">https://doi.org/10.1088/0305-4470/32/11/016</a>
</li>
<li> O.O. Vakhnenko. The new comlpletely integrable discretization of the nonlinear Schr?odinger equation). Ukr. J. Phys. 40, 118 (1995).
</li>
<li> O.O. Vakhnenko, V.O. Vakhnenko. Physically corrected Ablowitz–Ladik model and its application to the Peierls–Nabarro problem. Phys. Lett. A 196, 307 (1995).
<a href="https://doi.org/10.1016/0375-9601(94)00913-A">https://doi.org/10.1016/0375-9601(94)00913-A</a>
</li>
<li> O.O. Vakhnenko. Nonlinear beating excitations on ladder lattice. J. Phys. A: Math. Gen. 32, 5735 (1999).
<a href="https://doi.org/10.1088/0305-4470/32/30/315">https://doi.org/10.1088/0305-4470/32/30/315</a>
</li>
<li> O.O. Vakhnenko, M.J. Velgakis. Transverse and longitudinal dynamics of nonlinear intramolecular excitations on multileg ladder lattices. Phys. Rev. E 61, 7110 (2000).
<a href="https://doi.org/10.1103/PhysRevE.61.7110">https://doi.org/10.1103/PhysRevE.61.7110</a>
</li>
<li> O.O. Vakhnenko. Solitons on a zigzag-runged ladder lattice. Phys. Rev. E 64, 067601 (2001).
<a href="https://doi.org/10.1103/PhysRevE.64.067601">https://doi.org/10.1103/PhysRevE.64.067601</a>
</li>
<li> O.O. Vakhnenko. Integrable nonlinear ladder system with background-controlled intersite resonant coupling. J. Phys. A: Math. Gen. 39, 11013 (2006).
<a href="https://doi.org/10.1088/0305-4470/39/35/005">https://doi.org/10.1088/0305-4470/39/35/005</a>
</li>
<li> O.O. Vakhnenko. Enigma of probability amplitudes in Hamiltonian formulation of integrable semidiscrete nonlinear Schr?odinger systems. Phys. Rev. E 77, 026604 (2008).
<a href="https://doi.org/10.1103/PhysRevE.77.026604">https://doi.org/10.1103/PhysRevE.77.026604</a>
</li>
<li> O.O. Vakhnenko. Semidiscrete integrable nonlinear systems generated by the new fourth-order spectral operator. Local conservation laws. J. Nonlin. Math. Phys. 18, 401 (2011).
<a href="https://doi.org/10.1142/S1402925111001672">https://doi.org/10.1142/S1402925111001672</a>
</li>
<li> O.O. Vakhnenko. Integrable nonlinear Schr?odinger system on a triangular-lattice ribbon. J. Phys. Soc. Japan 84, 014003 (2015).
<a href="https://doi.org/10.7566/JPSJ.84.014003">https://doi.org/10.7566/JPSJ.84.014003</a>
</li>
<li> O.O. Vakhnenko. Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice. J. Math. Phys. 56, 033505 (2015).
<a href="https://doi.org/10.1063/1.4914510">https://doi.org/10.1063/1.4914510</a>
</li>
<li> O.O. Vakhnenko. Coupling-governed metamorphoses of the integrable nonlinear Schr?odinger system on a triangular-lattice ribbon. Phys. Lett. A 380, 2069 (2016).
<a href="https://doi.org/10.1016/j.physleta.2016.04.034">https://doi.org/10.1016/j.physleta.2016.04.034</a>
</li>
<li> O.O. Vakhnenko. Asymmetric canonicalization of the integrable nonlinear Schr?odinger system on a triangular-lattice ribbon. Appl. Math. Lett. 64, 81 (2017).
<a href="https://doi.org/10.1016/j.aml.2016.07.013">https://doi.org/10.1016/j.aml.2016.07.013</a>
</li>
<li> O.O. Vakhnenko. Symmetry-broken canonizations of the semi-discrete integrable nonlinear Schr?odinger system with background-controlled intersite coupling. J. Math. Phys. 57, 113504 (2016).
<a href="https://doi.org/10.1063/1.4968244">https://doi.org/10.1063/1.4968244</a>
</li>
<li> O.O. Vakhnenko. Distinctive features of the integrable non-linear Schr?odinger system on a ribbon of triangular lattice. Ukr. J. Phys. 62, 271 (2017).
<a href="https://doi.org/10.15407/ujpe62.03.0271">https://doi.org/10.15407/ujpe62.03.0271</a>
</li>
<li> O.O. Vakhnenko. Semi-discrete integrable nonlinear Schr?odinger system with background-controlled inter-site resonant coupling. J. Nonlin. Math. Phys. 24, 250 (2017).
<a href="https://doi.org/10.1080/14029251.2017.1316011">https://doi.org/10.1080/14029251.2017.1316011</a>
</li>
<li> O.O. Vakhnenko. Semi-discrete integrable nonlinear Schr?odinger system with background-dependent intersite interaction. Ukr. J. Phys. Reviews 12, 3 (2017).
</li>
<li> V.E. Vekslerchik, V.V. Konotop. Discrete nonlinear Schr?odinger equation under non-vanishing boundary conditions. Inverse Problems 8, 889 (1992).
<a href="https://doi.org/10.1088/0266-5611/8/6/007">https://doi.org/10.1088/0266-5611/8/6/007</a>
</li>
<li> J.M. Ziman. Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, 1979).
</li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.