Coupled Nonlinear Dynamics in the Three-Mode Integrable System on a Regular Chain

Authors

  • O.O. Vakhnenko Department for Theory of Nonlinear Processes in Condensed Matter, Bogolyubov Institute for Theoretical Physics of The Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.7.601

Keywords:

nonlinear theories and models, anharmonic lattice modes, integrable systems, Lagrangian and Hamiltonian dynamics, Darboux–B¨acklund dressing method, symmetry and conservation laws, nonlinear wave packet

Abstract

The article suggests the nonlinear lattice system of three dynamical subsystems coupled both in their potential and kinetic parts. Due to its essentially multicomponent structure the system is capable to model nonlinear dynamical excitations on regular quasi-one-dimensional lattices of various physical origins. The system admits a clear Hamiltonian formulation with the standard Poisson structure. The alternative Lagrangian formulation of system’s dynamics is also presented. The set of dynamical equations is integrable in the Lax sense, inasmuch as it possesses a zero-curvature representation. Though the relevant auxiliary linear problem involves a spectral third-order operator, we have managed to develop an appropriate two-fold Darboux–Backlund dressing technique allowing one to generate the nontrivial crop solution embracing all three coupled subsystems in a rather unusual way.

References

E. Fermi, P. Pasta, S. Ulam, M. Tsingou. Studies of the nonlinear problems. I. Los Alamos Report LA-1940, 1 (1955).

https://doi.org/10.2172/4376203

G.P. Berman, F.M. Izrailev. The Fermi-Pasta-Ulam problem: Fifty years of progress. Chaos 15, 015104 (2005).

https://doi.org/10.1063/1.1855036

M. Toda. Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan 22, 431 (1967).

https://doi.org/10.1143/JPSJ.22.431

M. Toda. Wave propagation in anharmonic lattices. J. Phys. Soc. Japan 23, 501 (1967).

https://doi.org/10.1143/JPSJ.23.501

S.V. Manakov. Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. - JETP 40, 269 (1975).

H. Flaschka. On Toda lattice. II: Inverse-scattering solution. Progr. Theor. Phys. 51, 703 (1974).

https://doi.org/10.1143/PTP.51.703

V.I. Inozemtsev. The fi nite Toda lattices. Comm. Math. Phys. 121, 629 (1989).

https://doi.org/10.1007/BF01218159

D.V. Laptev, M.M. Bogdan. Nonlinear periodic waves solutions of the nonlinear self-dual network equations. J. Math. Phys. 5, 042903 (2014).

https://doi.org/10.1063/1.4870649

M.M. Bogdan, D.V. Laptev. Exact description of the discrete breathers and solitons interaction in the nonlinear transmission lines. J. Phys. Soc. Japan 83, 064007 (2014).

https://doi.org/10.7566/JPSJ.83.064007

O.O. Vakhnenko, M.J. Velgakis. Slalom soliton dynamics on a ladder lattice with zig-zag distributed impurities. Phys. Lett. A 278, 59 (2000).

https://doi.org/10.1016/S0375-9601(00)00638-1

O.O. Vakhnenko, M.J. Velgakis. Multimode soliton dynamics in perturbed ladder lattices. Phys. Rev. E 63, 016612 (2001).

https://doi.org/10.1103/PhysRevE.63.016612

O.O. Vakhnenko, V.O. Vakhnenko. Physically corrected Ablowitz-Ladik model and its application to the Peierls-Nabarro problem. Phys. Lett. A 196, 307 (1995).

https://doi.org/10.1016/0375-9601(94)00913-A

O.O. Vakhnenko. New completely integrable discretization of the nonlinear Schr¨odinger equation. Ukr. Fiz. Zh. 40, 118 (1995).

A.S. Davydov, N.I. Kislukha. Solitary excitons in one-dimensional molecular chains. Phys. Stat. Solidi (b) 59, 465 (1973).

https://doi.org/10.1002/pssb.2220590212

O.S. Davydov, O.O. Yeremko. Radiative lifetime of solitons in molecular chains. Ukr. Fiz. Zh. 22, 881 (1977).

A.S. Davydov. Solitons in Molecular Systems (Kluwer Academic, 1991).

https://doi.org/10.1007/978-94-011-3340-1

O.O. Vakhnenko. Semidiscrete integrable systems inspired by the Davydov-Kyslukha model. Ukr. J. Phys. 58, 1092 (2013).

https://doi.org/10.15407/ujpe58.11.1092

O.O. Vakhnenko. Four-component integrable systems inspired by the Toda and the Davydov-Kyslukha models. Wave Motion 88, 1 (2019).

https://doi.org/10.1016/j.wavemoti.2019.01.013

O.O. Vakhnenko. Nonlinear integrable systems containing the canonical subsystems of distinct physical origins. Phys. Lett. A 384, 126081 (2020).

https://doi.org/10.1016/j.physleta.2019.126081

D.D. Georgiev, J.F. Glazebrook. Launching of Davydov solitons in protein a-helix spines. Physica E 124, 114332 (2020).

https://doi.org/10.1016/j.physe.2020.114332

V.F. Nesterenko. Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733 (1983).

https://doi.org/10.1007/BF00905892

V.F. Nesterenko. Dynamics of Heterogeneous Materials (Springer, 2001).

https://doi.org/10.1007/978-1-4757-3524-6

O.I. Gerasymov, A.Ya. Shivak. Towards wave transmission in gently perturbed weakly inhomogeneous non-linear

force-chain. Ukr. J. Phys. 65, 1008 (2020).

https://doi.org/10.15407/ujpe65.11.1008

T.A. Gadzhimuradov, A.M. Agalarov. Nonlocal solitons in a nonlinear chain of atoms. Phys. Sol. State 62, 982 (2020).

https://doi.org/10.1134/S1063783420060074

O.O. Vakhnenko. Three component nonlinear dynamical system generated by the new third-order discrete spectral problem. J. Phys. A: Math. Gen. 36, 5405 (2003).

https://doi.org/10.1088/0305-4470/36/20/305

O.O. Vakhnenko. A discrete nonlinear model of three coupled dynamical fi elds integrable by the Caudrey method. Ukr. J. Phys. 48, 653 (2003).

A.C. Newell. Solitons in Mathematics and Physics (SIAM Press, 1985). https://doi.org/10.1137/1.9781611970227

L.D. Faddeev, L.A. Takhtajan. Hamiltonian Methods in the Theory of Solitons (Springer, 1987). https://doi.org/10.1007/978-3-540-69969-9

N.E. Joukowsky.¨ Uber die Konturen der Tragfl ¨achen der Drachenfl ieger. Z. Flugtech. Motorluftschiff ahrt 1(22), 281 (1910).

N.E. Joukowsky. Uber die Konturen der Tragfl ¨achen der Drachenfl ieger. Z. Flugtech. Motorluftschiff ahrt 3(6), 81 (1912).

O.O. Vakhnenko. Semidiscrete integrable nonlinear systems generated by the new fourth-order spectral operator. Local conservation laws. J. Nonlin. Math. Phys. 18, 401 (2011). https://doi.org/10.1142/S1402925111001672

O.O. Vakhnenko. Four-wave semidiscrete nonlinear integrable system with PT-symmetry. J. Nonlin. Math. Phys. 20, 606 (2013). https://doi.org/10.1080/14029251.2013.865827

P.J. Caudrey. Differential and discrete spectral problems and their inverses. North-Holland Mathematics Studies 97, 221 (1984) (Elsevier, 1984). https://doi.org/10.1016/S0304-0208(08)71267-2

A.R. Chowdhury, G. Mahato. A Darboux-B¨acklund transformation associated with a discrete nonlinear Schr¨odinger equation. Lett. Math. Phys. 7, 313 (1983). https://doi.org/10.1007/BF00420181

A.S. Davydov. Th'eorie du Solide (Mir, 1980).

A.M. Fedorchenko. Theoretical Physics. Mechanics (Vyshcha Shkola, 1971) (in Ukrainian).

Downloads

Published

2021-08-04

How to Cite

Vakhnenko, O. (2021). Coupled Nonlinear Dynamics in the Three-Mode Integrable System on a Regular Chain. Ukrainian Journal of Physics, 66(7), 601. https://doi.org/10.15407/ujpe66.7.601

Issue

Section

General physics