Нові сенсори тиску з нанокомпозитів (біорозкладені полімери--наночастинки оксислу металу): виготовлення і характеристика

Автор(и)

  • A. Hashim University of Babylon, College of Education for Pure Sciences, Department of Physics
  • A. Hadi University of Babylon, College of Materials, Department of Ceramics and Building Materials

DOI:

https://doi.org/10.15407/ujpe63.8.754

Анотація

Розроблено та дослiджено новi нанокомпозити з низькою вартiстю i вагою i хорошою чутливiстю до тиску на основi полiвiнiлового спирту, полiакрилової кислоти i наночастинок окису свинцю. Вимiрянi провiднiсть нанокомпозитiв за постiйним током i дiелектричнi параметри в частотному дiапазонi 100 Гц–5 МГц. Експеримент показує, що дiелектрична константа i дiелектричнi втрати PVA–PAA–PbO2 нанокомпозитiв зменшуються з ростом частоти i ростуть зi збiльшенням концентрацiї наночастинок. Провiднiсть за змiнним струмом нанокомпозитiв зростає з частотою i концентрацiєю PbO2 наночастинок. Провiднiсть за постiйним струмом також збiльшується з концентрацiєю PbO2 наночастинок. Показано, що в iнтервалi тискiв 60–200 бар опiр нанокомпозитiв зменшується зi збiльшенням напруги, що стискає, при високiй чутливостi до тиску.

Посилання

<ol>
<li>H. Mei, C. Zhang, R. Wang, J. Feng, T. Zhang. Impedance characteristics of surface pressure-sensitive carbon black/silicone rubber composites. Sensors and Actuators A 233, 118 (2015).
<a href="https://doi.org/10.1016/j.sna.2015.06.009">https://doi.org/10.1016/j.sna.2015.06.009</a>
</li>
<li>A.M. Mart??nez. Polyimides for Piezoelectric Materials, Magnetoelectric Nanocomposites and Battery Separators: Synthesis and Characterization, PhD Thesis (Universidad del Pa??s Vasco, 2016).
</li>
<li>H.N. Chandrakala, Shivakumaraiah, H. Somashekarappa, R. Somashekar, S. Chinmayee, Siddaramaiah. Poly(vinyl alcohol)/zincoxide-ceriumoxide nanocomposites: Electrical, optical, structural and morphological characteristics. Indian J. Adv. in Chem. Sci. 2, 103 (2014).
</li>
<li>M.K. Mohanapriya, Kalim Deshmukh, M. Basheer Ahamed, K. Chidambaram, S.K. Khadheer Pasha. Zeolite 4A filled poly (3,4-ethylenedioxythiophene): (polystyrene-sulfonate) (PEDOT: PSS) and polyvinyl alcohol (PVA) blend nanocomposites as high-k dielectric materials for embedded capacitor applications. Adv. Mater. Lett. 7 (12), 996 (2016).
<a href="https://doi.org/10.5185/amlett.2016.6555">https://doi.org/10.5185/amlett.2016.6555</a>
</li>
<li>A. Hashim, A. Hadi. Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62 (11), (2017).
</li>
<li>I.R. Agool, K.J. Kadhim, A. Hashim. Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plastics Technol. 21 (2), (2017).
</li>
<li>A. Hashim, Q. Hadi. Structural, electrical and optical properties of (biopolymer blend/ titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci.: Materials in Electronics 29, 11598 (2018).
<a href="https://doi.org/10.1007/s10854-018-9257-z">https://doi.org/10.1007/s10854-018-9257-z</a>
</li>
<li>A. Hashim, Q. Hadi. Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorganic and Organo-metallic Polymers and Materials 28 (4), 1394 (2018).
<a href="https://doi.org/10.1007/s10904-018-0837-4">https://doi.org/10.1007/s10904-018-0837-4</a>
</li>
<li>Z. Al-Ramadhan, A. Hashim, A.J. Kadham Algidsawi. The D.C electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. 1400 (1), 180 (2011).
</li>
<li> K.J. Kadhim, I.R. Agool, A. Hashim. Effect of zirconium oxide nanoparticles on dielectric properties of (PVA-PEG-PVP) blend for medical application. J. Adv. Phys. 6 (2), 187 (2017).
<a href="https://doi.org/10.1166/jap.2017.1313">https://doi.org/10.1166/jap.2017.1313</a>
</li>
<li> K.J. Kadhim, I.R. Agool, A. Hashim. Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application, materials focus. 5 (5), 436 (2016).
</li>
<li> F.L. Rashid, A. Hadi, N.H. Al-Garah, A. Hashim. Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int. J. Pharmaceutical and Phytopharm. Res. 8 (1), (2018).
</li>
<li> I.R. Agool, K.J. Kadhim, A. Hashim. Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: Electrical properties for energy storage and release. Int. J. Plastics Technol. 20 (1), 121 (2016).
<a href="https://doi.org/10.1007/s12588-016-9144-5">https://doi.org/10.1007/s12588-016-9144-5</a>
</li>
<li> I.R. Agool, K.J. Kadhim, A. Hashim. Synthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plastics Technol. 21 (2), (2017).
</li>
<li> M. Obula Reddy, B. Chandra Babu. Structural, optical, electrical, and magnetic properties of PVA:Gd3+ and PVA:Ho3+ polymer films. Indian J. Mater. Sci. 2015, Article ID 927364 (2015).
</li>
<li> C.M. Mathew, K. Kesavan, S. Rajendran. Structural and electrochemical analysis of PMMA based Gel electrolyte membranes. Int. J. Electrochem. 2015, Article ID 494308 (2015).
<a href="https://doi.org/10.1155/2015/494308">https://doi.org/10.1155/2015/494308</a>
</li>
<li> A.F. Mansour, S.F. Mansour, M.A. Abdo. Enhancement of structural and electrical properties of ZnO/PVA nanocomposites. IOSR J. Appl. Phys. 7 (2), 97 (2015).
</li>
<li> R. Divya, M. Meena, C.K. Mahadevan, C.M. Padma. Investigation on CuO dispersed PVA polymer films. J. Engin. Res. and Applic. 4 (5), 1 (2014).
</li>
<li> A. Hashim, I.R. Agool, K.J. Kadhim. Novel of (polymer blend-Fe3O4) magnetic nanocomposites: Preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci.: Materials in Electronics 29 (12), 10369 (2018).
<a href="https://doi.org/10.1007/s10854-018-9095-z">https://doi.org/10.1007/s10854-018-9095-z</a>
</li>
<li> A. Hashim, A. Hadi. A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sensor Lett. 15 (12), (2017).
<a href="https://doi.org/10.1166/sl.2017.3910">https://doi.org/10.1166/sl.2017.3910</a>
</li>
<li> C. Srikanth, C. Sridhar, B.M. Nagabhushana, R.D. Mathad. Characterization and DC conductivity of novel CuO doped polyvinyl alcohol (PVA) nano-composite films. J. Engin. Res. and Applic. 4 (10), 38 (2014).
</li>
<li> A. Hadi, A. Hashim. Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. 62 (12), (2017).
</li>
<li> A. Hashim, A. Hadi. Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: Biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. 62 (12), (2017).
</li>
<li> A. Al-Saygh, D. Ponnamma, M.A. AlMaadeed, P. Vijayan, A. Karim, M.K. Hassan. Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polym. 9, 33 (2017).
<a href="https://doi.org/10.3390/polym9020033">https://doi.org/10.3390/polym9020033</a>
</li>
<li> M. Kalantari, J. Dargahi, J. K?ovecses, M. Ghanbari Mardasi, S. Nouri. A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Transactions on Mechatronics 17 (3), (2012).
<a href="https://doi.org/10.1109/TMECH.2011.2108664">https://doi.org/10.1109/TMECH.2011.2108664</a>
</li>
<li> Alamusi, Ning Hu, Hisao Fukunaga, Satoshi Atobe, Yaolu Liu, Jinhua Li. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11 (11), 10691 (2011).
<a href="https://doi.org/10.3390/s111110691">https://doi.org/10.3390/s111110691</a>
</li>
<li> C.-C. Su, C.-H. Li, N.-K. Chang, F. Gao, S.-H. Chang. Fabrication of high sensitivity carbon microcoil pressure sensors. Sensors 12, 10034 (2012).
<a href="https://doi.org/10.3390/s120810034">https://doi.org/10.3390/s120810034</a>
</li>
<li> J.-C. Wang, R.S. Karmakar, Y.-J. Lu, C.-Y. Huang, K.-C. Wei. Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures. Sensors 15, 818 (2015).
<a href="https://doi.org/10.3390/s150100818">https://doi.org/10.3390/s150100818</a></li>

Downloads

Опубліковано

2018-09-07

Як цитувати

Hashim, A., & Hadi, A. (2018). Нові сенсори тиску з нанокомпозитів (біорозкладені полімери--наночастинки оксислу металу): виготовлення і характеристика. Український фізичний журнал, 63(8), 754. https://doi.org/10.15407/ujpe63.8.754

Номер

Розділ

Фізика поверхні

Статті цього автора (авторів), які найбільше читають