Characteristic Changes in the Density and Shear Viscosity of Human Blood Plasma with Varying Protein Concentration
DOI:
https://doi.org/10.15407/ujpe65.2.151Keywords:
blood plasma, density, shear viscosity, protein concentration, oligomerization of biomoleculesAbstract
The density and shear viscosity of human blood plasma and their dependence on the concentration of proteins (albumin, y-globulin, fibrinogen, etc.) entering the natural blood composition have been studied. The biomaterial concentration is varied by diluting the blood plasma with the isotonic aqueous solution. It is shown that a decrease in the biomaterial concentration down to 0.91 of its initial value leads to a drastic change in the plasma density and to a change in the character of the concentration dependence of the shear viscosity of blood plasma. A hypothesis is put forward that the observed changes in the density and shear viscosity result from the structural transformations induced by oligomerization processes; first of all, by the albumin dimerization. A conclusion is drawn that the introduced blood substitutes should not exceed 10% of the blood mass; otherwise, structural transformations of a biomaterial in blood plasma can be provoked.
References
G.D.O. Lowe, J.C. Barbenel. Plasma and blood viscosity. In: Clinical Blood Rheology, edited by G.D.O. Lowe (CRC Press, 1988), V. 1, p. 11. https://doi.org/10.1201/9780429261176-2
M. Brust, C. Schaefer, R. Doerr, L. Pan, M. Garcia, P.E. Arratia, C.Wagner. Rheology of human blood plasma: Viscoelastic versus Newtonian behavior. Phys. Rev. Lett. 110, 078305 (2013). https://doi.org/10.1103/PhysRevLett.110.078305
E. Davila, D. Pares, G. Cuvelier, P. Relkin. Heat-induced gelation of porcine blood plasma proteins as affected by pH. Meat Sci. 76, 216 (2007). https://doi.org/10.1016/j.meatsci.2006.11.002
P.D. Watson. Modeling the effects of proteins on pH in plasma. J. Appl. Physiol. 86, 1421 (1999). https://doi.org/10.1152/jappl.1999.86.4.1421
F. Roosen-Runge, M. Hennig, F. Zhang, R.M.J. Jacobs, M. Sztucki et al. Protein self-diffusion in crowded solutions. Proc. Natl. Acad. Sci. USA 108, 11815 (2011). https://doi.org/10.1073/pnas.1107287108
S.A. Volkova, N.N. Borovkov. The Fundamentals of Clinical Hematology (NizhGMA, 2013) (in Russian).
B. Jachimska, M. Wasilewska, Z. Adamczyk. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir 24, 6866 (2008). https://doi.org/10.1021/la800548p
K. Baler, O.A. Martin, M.A. Carignano, G.A. Ameer, J.A. Vila et al. Electrostatic unfolding and interactions of albumin driven by pH changes: A molecular dynamics study. J. Phys. Chem. B 118, 921 (2014). https://doi.org/10.1021/jp409936v
A.L. Grebenev. Propaedeutics of Internal Diseases (Meditsina, 2001) (in Russian).
A. Michnik, K. Michalik, Z. Drzazga. DSC study of human serum albumin ageing processes in aqueous and low concentration ethanol solutions. Polish J. Env. Stud. 15, 81 (2006).
A. Bhattacharya, R. Prajapati, S. Chatterjee, T.K.Mukherjee. Concentration-dependent reversible self-oligomerization of serum albumins through intermolecular beta-sheet formation. Langmuir 30, 14894 (2014). https://doi.org/10.1021/la5034959
R.F. Atmeh, I.M. Arafa, M. Al-Khateeb. Albumin aggregates: hydrodynamic shape and physico-chemical properties. Jordan J. Chem. 2, 169 (2007).
O.V. Khorolskyi. Calculation of the effective macromolecular radii of human serum albumin from the shear viscosity data for its aqueous solutions. Ukr. J. Phys. 64, 287 (2019). https://doi.org/10.15407/ujpe64.4.287
O.V. Khorolskyi. Effective radii of macromolecules in dilute polyvinyl alcohol solutions. Ukr. J. Phys. 63, 144 (2018). https://doi.org/10.15407/ujpe63.2.144
O.V. Khorolskyi. The nature of viscosity of polyvinyl alcohol solutions in dimethyl sulfoxide and water. Ukr. J. Phys. 62, 858 (2017). https://doi.org/10.15407/ujpe62.10.0858
A. Einstein. Eine neue Bestimmung der Molekuldimensionen. Ann. Phys. 19, 289 (1906). https://doi.org/10.1002/andp.19063240204
Hydrodynamic Interaction of Particles in Suspensions, edited by A.Yu. Ishlinskii, G.G. Chernyi (Mir, 1980) (in Russian).
A.A. Guslisty, N.P. Malomuzh, A.I. Fisenko. Optimum temperature for human life activity. Ukr. J. Phys. 63, 809 (2018). https://doi.org/10.15407/ujpe63.9.809
N.P. Malomuzh, E.V. Orlov. New version of the cell method for determining the viscosity of suspensions. Kolloid Zh. 64, 802 (2002) (in Russian). https://doi.org/10.1023/A:1021502306529
T.S. Chow. Viscosities of concentrated dispersions. Phys. Rev. E 48, 1977 (1993). https://doi.org/10.1103/PhysRevE.48.1977
R. Consiglio, D.R. Baker, G. Paul, H.E. Stanley. Continuum percolation thresholds for mixtures of spheres of different sizes. Physica A 319, 49 (2003). https://doi.org/10.1016/S0378-4371(02)01501-7
D.C. Carter, J.X. Ho. Structure of serum albumin. Adv. Protein Chem. 45, 153 (1994). https://doi.org/10.1016/S0065-3233(08)60640-3
S. Curry, H.Mandelkow, P. Brick, N. Franks. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Mol. Biol. 5, 827 (1998). https://doi.org/10.1038/1869
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.