Optimal Temperature for Human Life Activity

  • A. A. Guslisty Odesa Regional Medical Center of Mental Health
  • N. P. Malomuzh I.I. Mechnikov National University of Odesa
  • A. I. Fisenko I.I. Mechnikov National University of Odesa

Abstract

The optimal temperature for the human life activity has been determined, by assuming that this parameter corresponds to the most intensive oxygen transport in arteries and the most intensive chemical reactions in the cells. The oxygen transport is found to be mainly governed by the blood saturation with oxygen and the blood plasma viscosity, with the both parameters depending on the temperature and the acid-base balance in blood. Additional parameters affecting the erythrocyte volume and, accordingly, the temperature of the most intensive oxygen transport are also taken into account. Erythrocytes are assumed to affect the shear viscosity of blood in the same way, as impurity particles change the suspension viscosity. It is shown that the
optimal temperature equals 36.6 ∘C under normal environmental conditions. The dependence of the optimal temperature for the human life activity on the acid-base index is discussed.

Keywords blood shear viscosity, erythrocytes, hemoglobin saturation with oxygen, acid- base balance

References


  1. N.P.O. Green, G.W. Stout, D.J. Taylor. Biological Science (Cambridge Univ. Press, 1997).

  2. G.L. Zubay, W.W. Parson, D.E. Vance. Principles of Biochemistry: Energy, Proteins, Catalysis (McGraw-Hill College Division, 1995).

  3. F.J. Ayala, J.A. Kiger, jr. Modern Genetics (Benjamin, 1980).

  4. L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, 136 (2006).
    https://doi.org/10.1016/j.molliq.2005.11.027

  5. A.I. Fisenko, N.P. Malomuzh. The role of the H-bond network in the creation of the life-giving properties of water. Chem. Phys. 345, 164 (2008).
    https://doi.org/10.1016/j.chemphys.2007.08.013

  6. A.I. Fisenko, N.P. Malomuzh. To what extent is water responsible for the maintenance of the life for warm-blooded organisms? Int. J. Mol. Sci. 10, 2383 (2009).
    https://doi.org/10.3390/ijms10052383

  7. L.A. Bulavin, N.P. Malomuzh. Dynamic phase transition in water as the most important factor provoking the protein denaturation in warm-blooded organisms. Fiz. Zhivogo 18, 16 (2010) (in Russian).

  8. N.P. Malomuzh, A.V. Oleinik. The origin of the kinematic shear viscosity of water. Zh. Strukt. Khim. 49, 1093 (2008) (in Russian).

  9. L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008).
    https://doi.org/10.1016/j.cplett.2008.01.028

  10. L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137, 1 (2008).
    https://doi.org/10.1016/j.molliq.2007.05.003

  11. The Engineering ToolBox. Water – Thermal Properties [http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html].

  12. D. Randall, W. Burggren, K. French, R. Eckert. Animal Physiology: Mechanisms and Adaptation (Freeman, 1997).

  13. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1993).

  14. B. Tremey, B. Vigue. Changes in blood gases with temperature: Implications for clinical Practice. Ann. Fr. Anesth. Reanim. 23, 474 (2004).
    https://doi.org/10.1016/j.annfar.2004.01.017

  15. S. Mrozek, F. Vardon, Th. Geeraerts. Brain temperature: physiology and pathophysiology after brain injury. Anesth. Res. Pract. 2012, 13 (2012).
    https://doi.org/10.1155/2012/989487

  16. J.-A. Collins, A. Rudensky, J. Gibson et al. Relating oxygen partial pressure, saturation and content: The hemoglobin-oxygen dissociation curve. Breathe 11, 194 (2015).
    https://doi.org/10.1183/20734735.001415

  17. N.P. Malomuzh, E.V. Orlov. A new version of the cell method for determining the viscosity of suspensions. Kolloidn. Zh. 64, 802 (2002) (in Russian).

  18. A. Einstein. Eine neue bestimmung der molekuldimensionen. Ann. Phys. 19, 289 (1906).
    https://doi.org/10.1002/andp.19063240204

  19. A. Einstein. Berichtigung zu meiner arbeit: "Eine neue bestimmung der molekuldimensionen". Ann. Phys. 34, 591 (1911).
    https://doi.org/10.1002/andp.19113390313

  20. Hydrodynamic Interaction of Particles in Suspensions. Edited by A.Yu. Ishlinskii, G.G. Chornyi (Mir, 1980) (in Russian).

  21. J. Happel, R. Brenner. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Prentice-Hall, 1965).

  22. J. Happel. Viscosity of suspension of uniform spheres. J. Appl. Phys. 28, 1288 (1957).
    https://doi.org/10.1063/1.1722635

  23. G.V. Richieri, H.C. Mel. Temperature effects on osmotic fragility, and the erythrocyte membrane. Biochim. Biophys. Acta 813, 41 (1985).
    https://doi.org/10.1016/0005-2736(85)90343-8

  24. J.F. Gillooly, R. Zenil-Ferguson. Vertebrate blood cell volume increase with temperature: implications for aerobic activity. Peer J. 2, 346 (2014).
    https://doi.org/10.7717/peerj.346

  25. P. Swietach, T. Tiffert, J.M.-A. Maruitz et al. Hydrogen ion dynamics in human red blood cells. J. Physiol. 588, 4995 (2010).
    https://doi.org/10.1113/jphysiol.2010.197392

  26. D. Kuzman, T. Znidartit, M. Gros et al. Effect of pH on red blood cell deformability. Eur. J. Physiol. 440, 193 (2000).
    https://doi.org/10.1007/s004240000061

  27. W.H. Reinhart, R. Gaudenz, R. Walter. Acidosis induced by lactate, piruvate, or HCl increases blood viscosity. J. Crit. Care 17, 68 (2002).
    https://doi.org/10.1053/jcrc.2002.33027

  28. P.V. Rand, W.H. Austin, E. Lacombe, N. Barker. pH and blood viscosity. J. Appl. Physiol. 25, 550 (1968).
    https://doi.org/10.1152/jappl.1968.25.5.550

  29. T.S. Chow. Viscosity of concentrated dispersions. Phys. Rev. E 48, 1977 (1993).
    https://doi.org/10.1103/PhysRevE.48.1977

  30. Blood Plasma and Serum Viscosity [http://www.rheosense.com/application/viscosity-of-blood-plasma-and-serum].

  31. R.I. Weed, A.I. Bowdler. Metabolic dependence of the critical hemolytic volume of human erythrocytes: Relationship of osmotic fragility and autohemolysis in hereditary spherocytosis and normal res cells. J. Clin. Invest. 45, 1137 (1966).
    https://doi.org/10.1172/JCI105420

  32. E. Naeraa, E.S. Peterson, E. Boye, J.W. Severinghaus. pH and molecular CO2 components of the Bohr effect in human blood. Scand. J. Clin. Lab. Invest. 18, 96 (1966).
    https://doi.org/10.3109/00365516609065612

  33. L. Cordone, A. Cupane, P.L. San Biagio, E. Vitrano. Effect of some monohydric alcohols on the oxygen affinity of hemoglobin: Relevance of solvent dielectric constant and hydrophobicity. Biopolymers 18, 1975 (1979).
    https://doi.org/10.1002/bip.1979.360180811

  34. T. Hamazaki, H. Shishido. Increase in blood viscosity due to alcohol drinking. Trombosis Res 30, 587 (1983).
    https://doi.org/10.1016/0049-3848(83)90267-0

  35. H. Tonnesen, L. Hejberg, S. Frobenius, J.R. Andersen. Erythrocyte mean cell volume – correlation to drinking pattern in heavy alcoholics. Acta Med. Scand. 219, 515 (1986).
    https://doi.org/10.1111/j.0954-6820.1986.tb03348.x

  36. W. Stringer, J. Porszasz, K. Wasserman, K. Maehara. Lactic acidosis as facilitator of oxyhemoglobin dissociation during exercise. J. Appl. Physiol. 76, 1462 (1994).
    https://doi.org/10.1152/jappl.1994.76.4.1462

  37. J.A. Smith, R.D. Telford, M. Kolbuch-Braddon, M.J. Weidemann. Lactate/H+uptake by red blood cells during exercise alters their physical properties. Eur. J. Appl. Physiol. 75, 54 (1997).
    https://doi.org/10.1007/s004210050126

  38. A. Lamminpaa, J. Vilska. Acid-base balance in alcohol users seen in an emergency room. Vet. Hum. Toxicol. 33, 482 (1991).

  39. S. Zehtabchi, R. Sinert, B.J. Baron, L. Paladino, K. Yadav. Does ethanol explain the acidosis commonly seen in ethanol-intoxicated patients? Clin.Toxicol. 43, 161 (2005).
    https://doi.org/10.1081/CLT-53083

  40. I. Izumi, A. Nasermoaddelia, M. Sekine, S. Kagamimori. Effect of moderate alcohol intake on nocturnal sleep respiratory parameters in healthy middle-aged men. Environ. Health Prev. Med. 10, 16 (2005).
    https://doi.org/10.1265/ehpm.10.16

  41. P.A. Easton, P. West, R.C. Meatherall et al. The effect of excessive ethanol ingestion on sleep in severe chronic obstructive pulmonary disease. Sleep 10, 224 (1987).
    https://doi.org/10.1093/sleep/10.3.224

  42. F.G. Issa, C.E. Sullivan. Alcohol, snoring and sleep apnea. J. Neurol., Neurosurg. Psychiatry 45, 353 (1982).
    https://doi.org/10.1136/jnnp.45.4.353

  43. Biological Chemistry with Exercises and Problems. Edited by S.E. Severin (GEOTAR-Media, 2011) (in Russian).

  44. D.L. Nelson, M.M. Cox. Lehninger Principles of Biochemistry (Freeman, 2008).

Published
2018-09-24
How to Cite
Guslisty, A., Malomuzh, N., & Fisenko, A. (2018). Optimal Temperature for Human Life Activity. Ukrainian Journal Of Physics, 63(9), 809. doi:10.15407/ujpe63.9.809
Section
Physics of liquids and liquid systems, biophysics and medical physics