Optimal Temperature for Human Life Activity
DOI:
https://doi.org/10.15407/ujpe63.9.809Keywords:
blood shear viscosity, erythrocytes, hemoglobin saturation with oxygen, acid- base balanceAbstract
The optimal temperature for the human life activity has been determined, by assuming that this parameter corresponds to the most intensive oxygen transport in arteries and the most intensive chemical reactions in the cells. The oxygen transport is found to be mainly governed by the blood saturation with oxygen and the blood plasma viscosity, with the both parameters depending on the temperature and the acid-base balance in blood. Additional parameters affecting the erythrocyte volume and, accordingly, the temperature of the most intensive oxygen transport are also taken into account. Erythrocytes are assumed to affect the shear viscosity of blood in the same way, as impurity particles change the suspension viscosity. It is shown that the
optimal temperature equals 36.6 ∘C under normal environmental conditions. The dependence of the optimal temperature for the human life activity on the acid-base index is discussed.
References
<li>N.P.O. Green, G.W. Stout, D.J. Taylor. Biological Science (Cambridge Univ. Press, 1997).
</li>
<li>G.L. Zubay, W.W. Parson, D.E. Vance. Principles of Biochemistry: Energy, Proteins, Catalysis (McGraw-Hill College Division, 1995).
</li>
<li>F.J. Ayala, J.A. Kiger, jr. Modern Genetics (Benjamin, 1980).
</li>
<li>L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, 136 (2006).
<a href="https://doi.org/10.1016/j.molliq.2005.11.027">https://doi.org/10.1016/j.molliq.2005.11.027</a>
</li>
<li>A.I. Fisenko, N.P. Malomuzh. The role of the H-bond network in the creation of the life-giving properties of water. Chem. Phys. 345, 164 (2008).
<a href="https://doi.org/10.1016/j.chemphys.2007.08.013">https://doi.org/10.1016/j.chemphys.2007.08.013</a>
</li>
<li>A.I. Fisenko, N.P. Malomuzh. To what extent is water responsible for the maintenance of the life for warm-blooded organisms? Int. J. Mol. Sci. 10, 2383 (2009).
<a href="https://doi.org/10.3390/ijms10052383">https://doi.org/10.3390/ijms10052383</a>
</li>
<li>L.A. Bulavin, N.P. Malomuzh. Dynamic phase transition in water as the most important factor provoking the protein denaturation in warm-blooded organisms. Fiz. Zhivogo 18, 16 (2010) (in Russian).
</li>
<li>N.P. Malomuzh, A.V. Oleinik. The origin of the kinematic shear viscosity of water. Zh. Strukt. Khim. 49, 1093 (2008) (in Russian).
</li>
<li>L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008).
<a href="https://doi.org/10.1016/j.cplett.2008.01.028">https://doi.org/10.1016/j.cplett.2008.01.028</a>
</li>
<li> L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137, 1 (2008).
<a href="https://doi.org/10.1016/j.molliq.2007.05.003">https://doi.org/10.1016/j.molliq.2007.05.003</a>
</li>
<li> The Engineering ToolBox. Water – Thermal Properties [http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html].
</li>
<li> D. Randall, W. Burggren, K. French, R. Eckert. Animal Physiology: Mechanisms and Adaptation (Freeman, 1997).
</li>
<li> L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1993).
</li>
<li> B. Tremey, B. Vigue. Changes in blood gases with temperature: Implications for clinical Practice. Ann. Fr. Anesth. Reanim. 23, 474 (2004).
<a href="https://doi.org/10.1016/j.annfar.2004.01.017">https://doi.org/10.1016/j.annfar.2004.01.017</a>
</li>
<li> S. Mrozek, F. Vardon, Th. Geeraerts. Brain temperature: physiology and pathophysiology after brain injury. Anesth. Res. Pract. 2012, 13 (2012).
<a href="https://doi.org/10.1155/2012/989487">https://doi.org/10.1155/2012/989487</a>
</li>
<li> J.-A. Collins, A. Rudensky, J. Gibson et al. Relating oxygen partial pressure, saturation and content: The hemoglobin-oxygen dissociation curve. Breathe 11, 194 (2015).
<a href="https://doi.org/10.1183/20734735.001415">https://doi.org/10.1183/20734735.001415</a>
</li>
<li> N.P. Malomuzh, E.V. Orlov. A new version of the cell method for determining the viscosity of suspensions. Kolloidn. Zh. 64, 802 (2002) (in Russian).
</li>
<li> A. Einstein. Eine neue bestimmung der molekuldimensionen. Ann. Phys. 19, 289 (1906).
<a href="https://doi.org/10.1002/andp.19063240204">https://doi.org/10.1002/andp.19063240204</a>
</li>
<li> A. Einstein. Berichtigung zu meiner arbeit: "Eine neue bestimmung der molekuldimensionen". Ann. Phys. 34, 591 (1911).
<a href="https://doi.org/10.1002/andp.19113390313">https://doi.org/10.1002/andp.19113390313</a>
</li>
<li> Hydrodynamic Interaction of Particles in Suspensions. Edited by A.Yu. Ishlinskii, G.G. Chornyi (Mir, 1980) (in Russian).
</li>
<li> J. Happel, R. Brenner. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Prentice-Hall, 1965).
</li>
<li> J. Happel. Viscosity of suspension of uniform spheres. J. Appl. Phys. 28, 1288 (1957).
<a href="https://doi.org/10.1063/1.1722635">https://doi.org/10.1063/1.1722635</a>
</li>
<li> G.V. Richieri, H.C. Mel. Temperature effects on osmotic fragility, and the erythrocyte membrane. Biochim. Biophys. Acta 813, 41 (1985).
<a href="https://doi.org/10.1016/0005-2736(85)90343-8">https://doi.org/10.1016/0005-2736(85)90343-8</a>
</li>
<li> J.F. Gillooly, R. Zenil-Ferguson. Vertebrate blood cell volume increase with temperature: implications for aerobic activity. Peer J. 2, 346 (2014).
<a href="https://doi.org/10.7717/peerj.346">https://doi.org/10.7717/peerj.346</a>
</li>
<li> P. Swietach, T. Tiffert, J.M.-A. Maruitz et al. Hydrogen ion dynamics in human red blood cells. J. Physiol. 588, 4995 (2010).
<a href="https://doi.org/10.1113/jphysiol.2010.197392">https://doi.org/10.1113/jphysiol.2010.197392</a>
</li>
<li> D. Kuzman, T. Znidartit, M. Gros et al. Effect of pH on red blood cell deformability. Eur. J. Physiol. 440, 193 (2000).
<a href="https://doi.org/10.1007/s004240000061">https://doi.org/10.1007/s004240000061</a>
</li>
<li> W.H. Reinhart, R. Gaudenz, R. Walter. Acidosis induced by lactate, piruvate, or HCl increases blood viscosity. J. Crit. Care 17, 68 (2002).
<a href="https://doi.org/10.1053/jcrc.2002.33027">https://doi.org/10.1053/jcrc.2002.33027</a>
</li>
<li> P.V. Rand, W.H. Austin, E. Lacombe, N. Barker. pH and blood viscosity. J. Appl. Physiol. 25, 550 (1968).
<a href="https://doi.org/10.1152/jappl.1968.25.5.550">https://doi.org/10.1152/jappl.1968.25.5.550</a>
</li>
<li> T.S. Chow. Viscosity of concentrated dispersions. Phys. Rev. E 48, 1977 (1993).
<a href="https://doi.org/10.1103/PhysRevE.48.1977">https://doi.org/10.1103/PhysRevE.48.1977</a>
</li>
<li> Blood Plasma and Serum Viscosity [http://www.rheosense.com/application/viscosity-of-blood-plasma-and-serum].
</li>
<li> R.I. Weed, A.I. Bowdler. Metabolic dependence of the critical hemolytic volume of human erythrocytes: Relationship of osmotic fragility and autohemolysis in hereditary spherocytosis and normal res cells. J. Clin. Invest. 45, 1137 (1966).
<a href="https://doi.org/10.1172/JCI105420">https://doi.org/10.1172/JCI105420</a>
</li>
<li> E. Naeraa, E.S. Peterson, E. Boye, J.W. Severinghaus. pH and molecular CO2 components of the Bohr effect in human blood. Scand. J. Clin. Lab. Invest. 18, 96 (1966).
<a href="https://doi.org/10.3109/00365516609065612">https://doi.org/10.3109/00365516609065612</a>
</li>
<li> L. Cordone, A. Cupane, P.L. San Biagio, E. Vitrano. Effect of some monohydric alcohols on the oxygen affinity of hemoglobin: Relevance of solvent dielectric constant and hydrophobicity. Biopolymers 18, 1975 (1979).
<a href="https://doi.org/10.1002/bip.1979.360180811">https://doi.org/10.1002/bip.1979.360180811</a>
</li>
<li> T. Hamazaki, H. Shishido. Increase in blood viscosity due to alcohol drinking. Trombosis Res 30, 587 (1983).
<a href="https://doi.org/10.1016/0049-3848(83)90267-0">https://doi.org/10.1016/0049-3848(83)90267-0</a>
</li>
<li> H. Tonnesen, L. Hejberg, S. Frobenius, J.R. Andersen. Erythrocyte mean cell volume – correlation to drinking pattern in heavy alcoholics. Acta Med. Scand. 219, 515 (1986).
<a href="https://doi.org/10.1111/j.0954-6820.1986.tb03348.x">https://doi.org/10.1111/j.0954-6820.1986.tb03348.x</a>
</li>
<li> W. Stringer, J. Porszasz, K. Wasserman, K. Maehara. Lactic acidosis as facilitator of oxyhemoglobin dissociation during exercise. J. Appl. Physiol. 76, 1462 (1994).
<a href="https://doi.org/10.1152/jappl.1994.76.4.1462">https://doi.org/10.1152/jappl.1994.76.4.1462</a>
</li>
<li> J.A. Smith, R.D. Telford, M. Kolbuch-Braddon, M.J. Weidemann. Lactate/H+uptake by red blood cells during exercise alters their physical properties. Eur. J. Appl. Physiol. 75, 54 (1997).
<a href="https://doi.org/10.1007/s004210050126">https://doi.org/10.1007/s004210050126</a>
</li>
<li> A. Lamminpaa, J. Vilska. Acid-base balance in alcohol users seen in an emergency room. Vet. Hum. Toxicol. 33, 482 (1991).
</li>
<li> S. Zehtabchi, R. Sinert, B.J. Baron, L. Paladino, K. Yadav. Does ethanol explain the acidosis commonly seen in ethanol-intoxicated patients? Clin.Toxicol. 43, 161 (2005).
<a href="https://doi.org/10.1081/CLT-53083">https://doi.org/10.1081/CLT-53083</a>
</li>
<li> I. Izumi, A. Nasermoaddelia, M. Sekine, S. Kagamimori. Effect of moderate alcohol intake on nocturnal sleep respiratory parameters in healthy middle-aged men. Environ. Health Prev. Med. 10, 16 (2005).
<a href="https://doi.org/10.1265/ehpm.10.16">https://doi.org/10.1265/ehpm.10.16</a>
</li>
<li> P.A. Easton, P. West, R.C. Meatherall et al. The effect of excessive ethanol ingestion on sleep in severe chronic obstructive pulmonary disease. Sleep 10, 224 (1987).
<a href="https://doi.org/10.1093/sleep/10.3.224">https://doi.org/10.1093/sleep/10.3.224</a>
</li>
<li> F.G. Issa, C.E. Sullivan. Alcohol, snoring and sleep apnea. J. Neurol., Neurosurg. Psychiatry 45, 353 (1982).
<a href="https://doi.org/10.1136/jnnp.45.4.353">https://doi.org/10.1136/jnnp.45.4.353</a>
</li>
<li> Biological Chemistry with Exercises and Problems. Edited by S.E. Severin (GEOTAR-Media, 2011) (in Russian).
</li>
<li> D.L. Nelson, M.M. Cox. Lehninger Principles of Biochemistry (Freeman, 2008).
</li>
<ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.