Optimal Temperature for Human Life Activity

Authors

  • A. A. Guslisty Odesa Regional Medical Center of Mental Health
  • N. P. Malomuzh I.I. Mechnikov National University of Odesa
  • A. I. Fisenko I.I. Mechnikov National University of Odesa

DOI:

https://doi.org/10.15407/ujpe63.9.809

Keywords:

blood shear viscosity, erythrocytes, hemoglobin saturation with oxygen, acid- base balance

Abstract

The optimal temperature for the human life activity has been determined, by assuming that this parameter corresponds to the most intensive oxygen transport in arteries and the most intensive chemical reactions in the cells. The oxygen transport is found to be mainly governed by the blood saturation with oxygen and the blood plasma viscosity, with the both parameters depending on the temperature and the acid-base balance in blood. Additional parameters affecting the erythrocyte volume and, accordingly, the temperature of the most intensive oxygen transport are also taken into account. Erythrocytes are assumed to affect the shear viscosity of blood in the same way, as impurity particles change the suspension viscosity. It is shown that the
optimal temperature equals 36.6 ∘C under normal environmental conditions. The dependence of the optimal temperature for the human life activity on the acid-base index is discussed.

References

<ol>
<li>N.P.O. Green, G.W. Stout, D.J. Taylor. Biological Science (Cambridge Univ. Press, 1997).
</li>
<li>G.L. Zubay, W.W. Parson, D.E. Vance. Principles of Biochemistry: Energy, Proteins, Catalysis (McGraw-Hill College Division, 1995).
</li>
<li>F.J. Ayala, J.A. Kiger, jr. Modern Genetics (Benjamin, 1980).
</li>
<li>L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, 136 (2006).
<a href="https://doi.org/10.1016/j.molliq.2005.11.027">https://doi.org/10.1016/j.molliq.2005.11.027</a>
</li>
<li>A.I. Fisenko, N.P. Malomuzh. The role of the H-bond network in the creation of the life-giving properties of water. Chem. Phys. 345, 164 (2008).
<a href="https://doi.org/10.1016/j.chemphys.2007.08.013">https://doi.org/10.1016/j.chemphys.2007.08.013</a>
</li>
<li>A.I. Fisenko, N.P. Malomuzh. To what extent is water responsible for the maintenance of the life for warm-blooded organisms? Int. J. Mol. Sci. 10, 2383 (2009).
<a href="https://doi.org/10.3390/ijms10052383">https://doi.org/10.3390/ijms10052383</a>
</li>
<li>L.A. Bulavin, N.P. Malomuzh. Dynamic phase transition in water as the most important factor provoking the protein denaturation in warm-blooded organisms. Fiz. Zhivogo 18, 16 (2010) (in Russian).
</li>
<li>N.P. Malomuzh, A.V. Oleinik. The origin of the kinematic shear viscosity of water. Zh. Strukt. Khim. 49, 1093 (2008) (in Russian).
</li>
<li>L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008).
<a href="https://doi.org/10.1016/j.cplett.2008.01.028">https://doi.org/10.1016/j.cplett.2008.01.028</a>
</li>
<li> L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137, 1 (2008).
<a href="https://doi.org/10.1016/j.molliq.2007.05.003">https://doi.org/10.1016/j.molliq.2007.05.003</a>
</li>
<li> The Engineering ToolBox. Water – Thermal Properties [http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html].
</li>
<li> D. Randall, W. Burggren, K. French, R. Eckert. Animal Physiology: Mechanisms and Adaptation (Freeman, 1997).
</li>
<li> L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1993).
</li>
<li> B. Tremey, B. Vigue. Changes in blood gases with temperature: Implications for clinical Practice. Ann. Fr. Anesth. Reanim. 23, 474 (2004).
<a href="https://doi.org/10.1016/j.annfar.2004.01.017">https://doi.org/10.1016/j.annfar.2004.01.017</a>
</li>
<li> S. Mrozek, F. Vardon, Th. Geeraerts. Brain temperature: physiology and pathophysiology after brain injury. Anesth. Res. Pract. 2012, 13 (2012).
<a href="https://doi.org/10.1155/2012/989487">https://doi.org/10.1155/2012/989487</a>
</li>
<li> J.-A. Collins, A. Rudensky, J. Gibson et al. Relating oxygen partial pressure, saturation and content: The hemoglobin-oxygen dissociation curve. Breathe 11, 194 (2015).
<a href="https://doi.org/10.1183/20734735.001415">https://doi.org/10.1183/20734735.001415</a>
</li>
<li> N.P. Malomuzh, E.V. Orlov. A new version of the cell method for determining the viscosity of suspensions. Kolloidn. Zh. 64, 802 (2002) (in Russian).
</li>
<li> A. Einstein. Eine neue bestimmung der molekuldimensionen. Ann. Phys. 19, 289 (1906).
<a href="https://doi.org/10.1002/andp.19063240204">https://doi.org/10.1002/andp.19063240204</a>
</li>
<li> A. Einstein. Berichtigung zu meiner arbeit: "Eine neue bestimmung der molekuldimensionen". Ann. Phys. 34, 591 (1911).
<a href="https://doi.org/10.1002/andp.19113390313">https://doi.org/10.1002/andp.19113390313</a>
</li>
<li> Hydrodynamic Interaction of Particles in Suspensions. Edited by A.Yu. Ishlinskii, G.G. Chornyi (Mir, 1980) (in Russian).
</li>
<li> J. Happel, R. Brenner. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Prentice-Hall, 1965).
</li>
<li> J. Happel. Viscosity of suspension of uniform spheres. J. Appl. Phys. 28, 1288 (1957).
<a href="https://doi.org/10.1063/1.1722635">https://doi.org/10.1063/1.1722635</a>
</li>
<li> G.V. Richieri, H.C. Mel. Temperature effects on osmotic fragility, and the erythrocyte membrane. Biochim. Biophys. Acta 813, 41 (1985).
<a href="https://doi.org/10.1016/0005-2736(85)90343-8">https://doi.org/10.1016/0005-2736(85)90343-8</a>
</li>
<li> J.F. Gillooly, R. Zenil-Ferguson. Vertebrate blood cell volume increase with temperature: implications for aerobic activity. Peer J. 2, 346 (2014).
<a href="https://doi.org/10.7717/peerj.346">https://doi.org/10.7717/peerj.346</a>
</li>
<li> P. Swietach, T. Tiffert, J.M.-A. Maruitz et al. Hydrogen ion dynamics in human red blood cells. J. Physiol. 588, 4995 (2010).
<a href="https://doi.org/10.1113/jphysiol.2010.197392">https://doi.org/10.1113/jphysiol.2010.197392</a>
</li>
<li> D. Kuzman, T. Znidartit, M. Gros et al. Effect of pH on red blood cell deformability. Eur. J. Physiol. 440, 193 (2000).
<a href="https://doi.org/10.1007/s004240000061">https://doi.org/10.1007/s004240000061</a>
</li>
<li> W.H. Reinhart, R. Gaudenz, R. Walter. Acidosis induced by lactate, piruvate, or HCl increases blood viscosity. J. Crit. Care 17, 68 (2002).
<a href="https://doi.org/10.1053/jcrc.2002.33027">https://doi.org/10.1053/jcrc.2002.33027</a>
</li>
<li> P.V. Rand, W.H. Austin, E. Lacombe, N. Barker. pH and blood viscosity. J. Appl. Physiol. 25, 550 (1968).
<a href="https://doi.org/10.1152/jappl.1968.25.5.550">https://doi.org/10.1152/jappl.1968.25.5.550</a>
</li>
<li> T.S. Chow. Viscosity of concentrated dispersions. Phys. Rev. E 48, 1977 (1993).
<a href="https://doi.org/10.1103/PhysRevE.48.1977">https://doi.org/10.1103/PhysRevE.48.1977</a>
</li>
<li> Blood Plasma and Serum Viscosity [http://www.rheosense.com/application/viscosity-of-blood-plasma-and-serum].
</li>
<li> R.I. Weed, A.I. Bowdler. Metabolic dependence of the critical hemolytic volume of human erythrocytes: Relationship of osmotic fragility and autohemolysis in hereditary spherocytosis and normal res cells. J. Clin. Invest. 45, 1137 (1966).
<a href="https://doi.org/10.1172/JCI105420">https://doi.org/10.1172/JCI105420</a>
</li>
<li> E. Naeraa, E.S. Peterson, E. Boye, J.W. Severinghaus. pH and molecular CO2 components of the Bohr effect in human blood. Scand. J. Clin. Lab. Invest. 18, 96 (1966).
<a href="https://doi.org/10.3109/00365516609065612">https://doi.org/10.3109/00365516609065612</a>
</li>
<li> L. Cordone, A. Cupane, P.L. San Biagio, E. Vitrano. Effect of some monohydric alcohols on the oxygen affinity of hemoglobin: Relevance of solvent dielectric constant and hydrophobicity. Biopolymers 18, 1975 (1979).
<a href="https://doi.org/10.1002/bip.1979.360180811">https://doi.org/10.1002/bip.1979.360180811</a>
</li>
<li> T. Hamazaki, H. Shishido. Increase in blood viscosity due to alcohol drinking. Trombosis Res 30, 587 (1983).
<a href="https://doi.org/10.1016/0049-3848(83)90267-0">https://doi.org/10.1016/0049-3848(83)90267-0</a>
</li>
<li> H. Tonnesen, L. Hejberg, S. Frobenius, J.R. Andersen. Erythrocyte mean cell volume – correlation to drinking pattern in heavy alcoholics. Acta Med. Scand. 219, 515 (1986).
<a href="https://doi.org/10.1111/j.0954-6820.1986.tb03348.x">https://doi.org/10.1111/j.0954-6820.1986.tb03348.x</a>
</li>
<li> W. Stringer, J. Porszasz, K. Wasserman, K. Maehara. Lactic acidosis as facilitator of oxyhemoglobin dissociation during exercise. J. Appl. Physiol. 76, 1462 (1994).
<a href="https://doi.org/10.1152/jappl.1994.76.4.1462">https://doi.org/10.1152/jappl.1994.76.4.1462</a>
</li>
<li> J.A. Smith, R.D. Telford, M. Kolbuch-Braddon, M.J. Weidemann. Lactate/H+uptake by red blood cells during exercise alters their physical properties. Eur. J. Appl. Physiol. 75, 54 (1997).
<a href="https://doi.org/10.1007/s004210050126">https://doi.org/10.1007/s004210050126</a>
</li>
<li> A. Lamminpaa, J. Vilska. Acid-base balance in alcohol users seen in an emergency room. Vet. Hum. Toxicol. 33, 482 (1991).
</li>
<li> S. Zehtabchi, R. Sinert, B.J. Baron, L. Paladino, K. Yadav. Does ethanol explain the acidosis commonly seen in ethanol-intoxicated patients? Clin.Toxicol. 43, 161 (2005).
<a href="https://doi.org/10.1081/CLT-53083">https://doi.org/10.1081/CLT-53083</a>
</li>
<li> I. Izumi, A. Nasermoaddelia, M. Sekine, S. Kagamimori. Effect of moderate alcohol intake on nocturnal sleep respiratory parameters in healthy middle-aged men. Environ. Health Prev. Med. 10, 16 (2005).
<a href="https://doi.org/10.1265/ehpm.10.16">https://doi.org/10.1265/ehpm.10.16</a>
</li>
<li> P.A. Easton, P. West, R.C. Meatherall et al. The effect of excessive ethanol ingestion on sleep in severe chronic obstructive pulmonary disease. Sleep 10, 224 (1987).
<a href="https://doi.org/10.1093/sleep/10.3.224">https://doi.org/10.1093/sleep/10.3.224</a>
</li>
<li> F.G. Issa, C.E. Sullivan. Alcohol, snoring and sleep apnea. J. Neurol., Neurosurg. Psychiatry 45, 353 (1982).
<a href="https://doi.org/10.1136/jnnp.45.4.353">https://doi.org/10.1136/jnnp.45.4.353</a>
</li>
<li> Biological Chemistry with Exercises and Problems. Edited by S.E. Severin (GEOTAR-Media, 2011) (in Russian).
</li>
<li> D.L. Nelson, M.M. Cox. Lehninger Principles of Biochemistry (Freeman, 2008).
</li>
<ol>

Published

2018-09-24

How to Cite

Guslisty, A. A., Malomuzh, N. P., & Fisenko, A. I. (2018). Optimal Temperature for Human Life Activity. Ukrainian Journal of Physics, 63(9), 809. https://doi.org/10.15407/ujpe63.9.809

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)