Temperature-Induced Features in the Local Structure of Aqueous Monovalent Electrolyte Solutions

  • N. A. Atamas Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L. A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics
  • D. Vasyl’eva Taras Shevchenko National University of Kyiv, Faculty of Physics
Keywords: molecular dynamics, intermolecular interaction energy, local structure, hydrogen bond


The results of researches concerning the temperature influence on the formation of a local structure in infinitely dilute aqueous solutions of monovalent sodium electrolytes are reported. The analysis of experimental data shows that the dissolution of a salt leads to the formation of a local structure in water. The results obtained do not contradict, but significantly complement the results of other experimental studies of dielectric permittivity and those with the use of neutron and infrared spectroscopies.


F. Mouˇcka, I. Nezbeda, and W.R. Smith, J. Chem. Phys. 139, 124505 (2013). https://doi.org/10.1063/1.4821153

P. Auffinger, T.E. Cheatham, and A.C. Vaiana, J. Chem. Theor. Comp. 3, 1851 (2007). https://doi.org/10.1021/ct700143s

C. Caleroa, J. Faraudoa, and M. Aguilella-Arzo, Mol. Sim. 37, 123 (2011). https://doi.org/10.1080/08927022.2010.525513

J. Walter and S. Deublein, High Perf. Comp. Sci. Eng. 11, 185 (2012).

S.V. Shevkunov, Rus. J. Electrochem. 49, 238 (2013). https://doi.org/10.1134/S1023193513030130

B. Luan and A. Aksimentiev, Soft Matt. 6, 243 (2010). https://doi.org/10.1039/B917973A

G.H. Zimmerman, M.S. Gruszkiewicz, and R.H. Wood, J. Phys. Chem. 99, 11612 (1995). https://doi.org/10.1021/j100029a045

P.C. Ho and D.A. Palmer, J. Sol. Chem. 25, 711 (1996). https://doi.org/10.1007/BF00973780

S.H. Lee, P.T. Cummings, J.M. Simonson et al., Chem. Phys. Lett. 293, 289 (1998). https://doi.org/10.1016/S0009-2614(98)00766-0

O.Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultants Bureau, New York, 1965).

K.D. Collins, G.W. Neilson, and J.E. Enderby, Biophys. Chem. 128, 95 (2007). https://doi.org/10.1016/j.bpc.2007.03.009

L.A. Bulavin, I.V. Zhyganiuk, M.P. Malomuzh, and K.M. Pankratov, Ukr. J. Phys. 56, 893 (2011).

M.P. Allen, Computer Simulation of Liquids (Clarendon Press, Oxford, 2001).

S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, and S.H. Lee, J. Phys. Chem. B 102, 4193 (1998). https://doi.org/10.1021/jp980642x

J.C. Rasaiah and R.M. Lynden-Bell, Phil. Trans. R. Soc. Lond. A 359, 1545 (2001). https://doi.org/10.1098/rsta.2001.0865

T.R. Forester, The DL-POLY-2.0. Reference Manual and Version 2.0 edition (CCLRC, Daresbury Laboratory, Warrington, 1995).

A. Arnold, C. Holm, in Advanced Computer Simulation Approaches for Soft Matter Sciences (Springer, Berlin, 2005), Vol. 2, p. 59. https://doi.org/10.1007/b136793

B.Ya. Simkin and I. I. Sheikhet, Quantum Chemical and Statistical Theory of Solutions: A Computational Approach (Ellis Horwood, London, 1995).

P.L. Chau and R. L. Mancera, Mol. Phys. 96, 109 (1999). https://doi.org/10.1080/00268979909482943

I.I. Adamenko and L.A. Bulavin, Physics of Liquids and Liquid Systems (ASMI, Kyiv, 2006) (in Ukrainian).

G.C. Pimentel and A.L. McClellan, The Hydrogen Bond (Freeman, San Francisco, 1960).

How to Cite
Atamas, N., Bulavin, L., & Vasyl’eva, D. (2019). Temperature-Induced Features in the Local Structure of Aqueous Monovalent Electrolyte Solutions. Ukrainian Journal of Physics, 60(12), 1218. https://doi.org/10.15407/ujpe60.12.1218
Soft matter

Most read articles by the same author(s)

1 2 > >>