New Results in the Theory of Collective Self-Diffusion in Liquids

  • T. V. Lokotosh I.I. Mechnikov National University of Odesa
  • N. P. Malomuzh I.I. Mechnikov National University of Odesa
  • K. N. Pankratov Odesa National Polytechnic University
  • K. S. Shakun Odesa National Maritime Academy
Keywords: self-diffusion coefficient, collective and one-particle components of self-diffusion coefficient, Maxwell relaxation time, Lagrange particle

Abstract

Results of new researches concerning the collective nature of transfer phenomena in liquids are reported. Attention is concentrated on the consistent analysis of a nontrivial time dependence of the root-mean-square displacement (RMSD) of molecules. The account of the contribution associated with the collective component of the molecular motion is shown to result in a more adequate description of the RMSD of molecules at short time intervals. A new method for the determination of the Maxwell relaxation time, which is one of the most important dynamic parameters of molecular systems, is expounded. Mechanisms of one-particle diffusion in water and argon are proposed. The correlation between the results obtained and the results of molecular dynamics studies in computer experiments by G.G.Malenkov, Yu.I.Naberukhin, and V.P.Voloshin aimed at determining the dimensions of Lagrange particles are discussed. A brief historical review of the problem of self-diffusion in liquids is made.

References

V.S. Oskotskii, Fiz. Tverd. Tela 5, 1082 (1963).

I.Z. Fisher, Zh. Eksp. Teor. Fiz. 61, 1647 (1971).

K.S. Singwi and A. Sj¨olander, Phys. Rev. 119, 863 (1960).

http://dx.doi.org/10.1103/PhysRev.119.863

T.V. Lokotosh, N.P. Malomuzh, and K.N. Pankratov, J. Chem. Eng. Data 55, 2021 (2010).

http://dx.doi.org/10.1021/je9009706

J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955).

E.N. da C. Andrade, Proc. Phys. Soc. London 52, 748 (1940).

H. Eyring, J. Chem. Phys. 4, 283 (1936).

http://dx.doi.org/10.1063/1.1749836

R.H. Ewell and H. Eyring, J. Chem. Phys. 5, 726 (1937).

http://dx.doi.org/10.1063/1.1750108

R.A. Swalin, Acta Metall. 7, 736 (1959).

http://dx.doi.org/10.1016/0001-6160(59)90179-8

R.A. Swalin, Acta Metall. 9, 379 (1961).

http://dx.doi.org/10.1016/0001-6160(61)90231-0

R.A. Swalin, Z. Naturforsh. 23a, 805 (1968).

A.L. Zvyagintsev, Ph.D. thesis (Kyiv State University, Kyiv, 1971) (in Russian).

D.K. Belashchenko, Transfer Phenomena in Liquid Metals and Semiconductors (Atomizdat, Moscow, 1970) (in Russian).

L.A. Bulavin, D.A. Gavryushenko, and V.M. Sysoev, Molecular Physics (Znannya, Kyiv, 2006) (in Ukrainian).

L.A. Bulavin, Neutron Diagnostics of Liquid Matter State (Institute for Safety Problems of Nuclear Power Plants, Chornobyl, 2012) (in Ukrainian).

C.H. Ma and R.A. Swalin, J. Chem. Phys. 39, 3014 (1962).

http://dx.doi.org/10.1063/1.1732419

N. Nachtrieb, Adv. Phys. 16, 62 (1967).

http://dx.doi.org/10.1080/00018736700101425

A.R. Dexter and A.J. Matheson, J. Chem. Phys. 54, 203 (1971).

http://dx.doi.org/10.1063/1.1674594

L.A. Bulavin, P.G. Ivanitskii, V.T. Krotenko, and V.N. Lyaskovskaya, Zh. Fiz. Khim. 61, 3270 (1987).

L.A. Bulavin, A.A. Vasilkevich, A.K. Dorosh, P.G. Ivanitskii, V.T. Krotenko, and V.I. Slisenko, Ukr. Fiz. Zh. 31, 1703 (1986).

S.A. Mikhailenko and V.V. Yakuba, Ukr. Fiz. Zh. 26, 784 (1981).

S.A. Mikhailenko and V.V. Yakuba, Ukr. Fiz. Zh. 27, 712 (1982).

T.V. Lokotosh and N.P. Malomuzh, Physica A 286, 474 (2000).

http://dx.doi.org/10.1016/S0378-4371(00)00107-2

T.V. Lokotosh and N.P. Malomuzh, J. Mol. Liq. 93, 95 (2001).

http://dx.doi.org/10.1016/S0167-7322(01)00214-8

T.V. Lokotosh, N.P. Malomuzh, and K.S. Shakun, J. Mol. Liq. 96-97, 245, (2002).

http://dx.doi.org/10.1016/S0167-7322(01)00351-8

T.V. Lokotosh, N.P. Malomuzh, and K.S. Shakun, J. Chem. Phys. 118, 10382 (2003).

http://dx.doi.org/10.1063/1.1575203

L.A. Bulavin, T.V. Lokotosh, and N.P. Malomuzh, J. Mol. Liq. 137, 1 (2008).

http://dx.doi.org/10.1016/j.molliq.2007.05.003

L.A. Bulavin, A.I. Fisenko, and N.P. Malomuzh, Chem. Phys. Let. 453, 183 (2008).

http://dx.doi.org/10.1016/j.cplett.2008.01.028

Yu.B. Mel'nichenko and L.A. Bulavin, Polymer 32, 3295 (1991).

http://dx.doi.org/10.1016/0032-3861(91)90530-V

Y.B. Mel'nichenko, G.D. Wignalla, D.R. Cole, H. Frielinghaus, and L.A. Bulavin, J. Mol. Liq. 120, 7 (2005).

http://dx.doi.org/10.1016/j.molliq.2004.07.070

G.G. Malenkov, Yu.I. Naberukhin, and V.P. Voloshin, Zh. Ross. Khim. Obshch. 53, 25 (2009).

G.G. Malenkov, Yu I. Naberukhin, and V.P. Voloshin, Struct. Chem. 22, 459 (2011).

http://dx.doi.org/10.1007/s11224-011-9766-3

Yu.I. Naberukhin and V.P. Voloshin, Zh. Strukt. Khim. 48, 1066 (2007).

G.G. Malenkov, Yu.I. Naberukhin, and V.P.Voloshin, Zh. Fiz. Khim. 86, 1485 (2012).

V.P. Voloshin, G.G. Malenkov, and Yu.I. Naberukhin, Zh. Strukt. Khim. 54, S233 (2013).

P. Resibois and M. De Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

R. Hartkamp, P.J. Daivis, and B.D. Todd, Phys. Rev. E 87, 032155 (2013).

http://dx.doi.org/10.1103/PhysRevE.87.032155

P.S. van der Gulik, Physica A 256, 39 (1998).

http://dx.doi.org/10.1016/S0378-4371(98)00197-6

P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill, New York, 1953).

D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005).

http://dx.doi.org/10.1002/jcc.20291

C. Oostenbrink, A. Villa, A.E. Mark, and W.F. van Gunsteren, J. Comput. Chem. 25, 1656 (2004).

http://dx.doi.org/10.1002/jcc.20090

S. Nose, Mol. Phys. 52, 255 (1984).

http://dx.doi.org/10.1080/00268978400101201

W.G. Hoover, Phys. Rev. A 31, 1695 (1985).

http://dx.doi.org/10.1103/PhysRevA.31.1695

J. Naghizadeh and S.A. Rice, J. Chem. Phys. 36, 2710 (1962).

http://dx.doi.org/10.1063/1.1732357

R. Laghaei, A.E. Nasrabad, and Byung Chan Eu, J. Phys. Chem. B 109, 5873 2005.

http://dx.doi.org/10.1021/jp0448245

A.Yu. Kuksin, G.E. Norman, and V.V. Stegailov, High Temp. 45, 37 (2007).

http://dx.doi.org/10.1134/S0018151X07010063

L.A. Bulavin, N.P. Malomuzh, and K.N. Pankratov, Zh. Strukt. Khim. 47, 52 (2006).

L.A. Bulavin, N.P. Malomuzh, and K.N. Pankratov, Zh. Strukt. Khim. 47, S54 (2006).

N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, and K.N. Pankratov, Zh. Strukt. Khim. 54, S210 (2013).

P. Blanckenhagen, Ber. Bunsenges. Phys. Chem. 76, 891 (1972).

S.M. Iskenderov and A.G. Novikov, Preprint PEI-965 (Phys.-Energ. Inst., Obninsk, 1979) (in Russian).

J. Teixeira, M.-C. Bellisent-Funel, S.-H. Chen, and J. Dianoux, Phys. Rev. A 31, 1913 (1985).

http://dx.doi.org/10.1103/PhysRevA.31.1913

L.A. Bulavin, G.M. Verbinska, L.O. Komarova, and V.T. Krotenko, Ukr. Fiz. Zh. 50, 938 (2005).

G. Pruppacher, J. Chem. Phys. 56, 101 (1972).

http://dx.doi.org/10.1063/1.1676831

U. Kaatze, J. Sol. Chem. 26, 1049 (1997).

http://dx.doi.org/10.1007/BF02768829

T.V. Lokotosh, S. Magazu, G. Maisano, and N.P. Malomuzh, Phys. Rev. E 62, 3572 (2000).

http://dx.doi.org/10.1103/PhysRevE.62.3572

A. Rahman, Phys. Rev. A 136, 405 (1964).

http://dx.doi.org/10.1103/PhysRev.136.A405

Published
2019-01-15
How to Cite
Lokotosh, T., Malomuzh, N., Pankratov, K., & Shakun, K. (2019). New Results in the Theory of Collective Self-Diffusion in Liquids. Ukrainian Journal of Physics, 60(8), 697. https://doi.org/10.15407/ujpe60.08.0697
Section
Fields and elementary particles

Most read articles by the same author(s)