Homfly Polynomial Invariants of Torus Knots and Bosonic (q, p)-Calculus

Authors

  • A. M. Pavlyuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.12.1178

Keywords:

polynomial invariant, knot, link, Alexander, Jones, and HOMFLY skein relations, “bosonic” q-numbers, “bosonic” (q, p)-numbers

Abstract

For the one-parameter Alexander (Jones) skein relation we introduce the Alexander (Jones) “bosonic” q-numbers, and for the two-parameter HOMFLY skein relation we propose the HOMFLY “bosonic” (q, p)-numbers (“bosonic” numbers connected with deformed bosonic oscillators). With the help of these deformed “bosonic” numbers, the corresponding skein relations can be reproduced. Analyzing the introduced “bosonic” numbers, we point out two ways of obtaining the two-parameter HOMFLY skein relation (“bosonic” (q, p)-numbers) from the one-parameter Alexander and Jones skein relations (from the corresponding “bosonic” q-numbers). These two ways of obtaining the HOMFLY skein relation are equivalent.

References

J.H. Conway, in: Computational Problems in Abstract Algebra (Pergamon, New York, 1970), pp. 329–358.

V. Kac and P. Cheung, Quantum Calculus (Springer, Berlin, 2002).

https://doi.org/10.1007/978-1-4613-0071-7

A. Chakrabarti and R. Jagannathan, J. Phys. A: Math. Gen. 24, L711 (1991).

https://doi.org/10.1088/0305-4470/24/13/002

A.M. Gavrilik and A.M. Pavlyuk, Ukr. J. Phys. 55, 129 (2010); arXiv:0912.4674v2 [math-ph].

A.M. Gavrilik and A.M. Pavlyuk, Ukr. J. Phys. 56, 680 (2011); arXiv:1107.5516v1 [math-ph].

A.M. Pavlyuk, Algebras, Groups and Geometries 29, 173 (2012).

A.M. Pavlyuk, Ukr. J. Phys. 58, 673 (2013).

https://doi.org/10.15407/ujpe58.07.0673

J.W. Alexander, Trans. Amer. Math. Soc. 30, 275 (1928).

https://doi.org/10.1090/S0002-9947-1928-1501429-1

V.F.R. Jones, Bull. AMS 12, 103 (1985).

https://doi.org/10.1090/S0273-0979-1985-15304-2

P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millet, and A. Ocneanu, Bull. AMS 12, 239 (1985).

https://doi.org/10.1090/S0273-0979-1985-15361-3

L.C. Biedenharn, J. Phys. A: Math. Gen. 22, L873 (1989).

https://doi.org/10.1088/0305-4470/22/18/004

A.J. Macfarlane, J. Phys. A: Math. Gen. 22, 4581 (1989).

https://doi.org/10.1088/0305-4470/22/21/020

Downloads

Published

2018-10-11

How to Cite

Pavlyuk, A. M. (2018). Homfly Polynomial Invariants of Torus Knots and Bosonic (q, p)-Calculus. Ukrainian Journal of Physics, 58(12), 1178. https://doi.org/10.15407/ujpe58.12.1178

Issue

Section

General problems of theoretical physics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 

You may also start an advanced similarity search for this article.