Peculiarities of Current Transport in Titanium Oxide-Silicon Heterostructures

Authors

  • Yu.S. Milovanov Taras Shevchenko National University of Kyiv, Institute of High Technologies of Kyiv
  • I.V. Gavrilchenko Taras Shevchenko National University of Kyiv, Institute of High Technologies of Kyiv
  • V.Ya. Gayvoronsky Taras Shevchenko National University of Kyiv, Institute of High Technologies of Kyiv
  • G.V. Kuznetsov Taras Shevchenko National University of Kyiv, Institute of High Technologies of Kyiv
  • V.A. Skryshevsky Taras Shevchenko National University of Kyiv, Institute of High Technologies of Kyiv

DOI:

https://doi.org/10.15407/ujpe57.5.545

Keywords:

-

Abstract

The mechanisms of charge carrier injection into Tі–TіО2–(n, p)Sі heterostructures have been studied. The influence of the porous TiO2 structure and the silicon substrate type on the electrical characteristics of heterostructures is analyzed. The charge transfer is shown to be accompanied by the appearance of a compensating polarization charge on the surface of TiO2 nanoparticles. Correlations between the type of adsorbed molecules and the conditions of the current flow have been determined. In Ті–ТіО2p-Sі heterostructures, a change of the ratio between the numbers of injected electrons and holes can lead to the negative-conductivity effect.

References

V.A. Skryshevsky, V.A. Vikulov, O.V. Tretyak, V.M. Zinchuk, F. Koch, and Th. Dittrich, Phys. Stat. Sol. A 197, 534 (2003).

https://doi.org/10.1002/pssa.200306559

S.K. Hazra, S. Roy, and S. Basu, Mater. Sci. Eng. B 110, 195 (2004).

https://doi.org/10.1016/j.mseb.2004.03.006

G. Korotcenkov and B.K. Cho, Crit. Rev. Solid State Mater. Sci. 35, 1 (2010).

https://doi.org/10.1080/10408430903245369

S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, Mater. Chem. Phys. 77, 903 (2002).

https://doi.org/10.1016/S0254-0584(02)00189-X

R. Komiya, J. Photochem. Photobio. A 164, 123 (2004).

https://doi.org/10.1016/j.jphotochem.2003.11.015

Th. Dittrich, V. Zinchuk, V. Skryshevskyy, I. Urban, and O. Hilt, J. Appl. Phys. 98, 104501 (2005).

https://doi.org/10.1063/1.2135890

A. Ennaoui, B.R. Sankapal, V. Skryshevsky, and M.Ch. Lux-Steiner, Sol. Energy Mater. Sol. Cells 90, 1533 (2006).

https://doi.org/10.1016/j.solmat.2005.10.019

E.A. Konstantinova, V.Ya. Gayvoronskiy, V.Yu. Timoshenko, and P.K. Kashkarov, Semiconductors 44, 1093 (2010).

https://doi.org/10.1134/S106378261008018X

P. Viswanathamurthi, N. Bhattarai, C.K. Kim, H.Y. Kim, and D.R. Lee, Inorg. Chem. Commun. 7, 679 (2004).

https://doi.org/10.1016/j.inoche.2004.03.013

O. Harizanov and A. Harizanova, Sol. Energy Mater. Sol. Cells 63, 185 (2002).

https://doi.org/10.1016/S0927-0248(00)00008-8

Yingchun Zhu and Chuanxian Ding, J. Europ. Ceram. Soc. 20, 127 (2000).

https://doi.org/10.1016/S0955-2219(99)00159-4

G. Kron, T. Egerter, J.H. Werner, and U. Rau, J. Phys. Chem. B 107, 3556 (2003).

https://doi.org/10.1021/jp0222144

P.M. Kumar, S. Badrinarayanan, and M. Sastry, Thin Solid Films 358, 122 (2000).

https://doi.org/10.1016/S0040-6090(99)00722-1

A. Zaban, A. Meier, and B.A. Gregg, J. Phys. Chem. B 101, 7985 (1997).

https://doi.org/10.1021/jp971857u

V.A. Skryshevskyy, Th. Dittrich, and J. Rappich, Phys. Stat. Sol. A 201, 157 (2004).

https://doi.org/10.1002/pssa.200306734

E.A. Lebedev and Th. Dittrich, Semiconductors 36, 1268 (2002).

https://doi.org/10.1134/1.1521229

A.L. Fahrenbruch and R.H. Bube, Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion (Academic Press, New York, 1983).

https://doi.org/10.1016/B978-0-12-247680-8.50013-X

A.Yu. Karlach, G.V. Kuznetsov, S.V. Litvinenko, Yu.S. Milovanov, and V.A. Skryshevsky, Semiconductors 44, 1342 (2010).

https://doi.org/10.1134/S1063782610100179

V.B. Lazarev, V.G. Krasov, and I.S. Shaplygin, Electric Conductivity of Oxide Systems and Film Structures (Nauka, Moscow, 1979) (in Russian).

A.I. Manilov, A.M. Veremenko, I.I. Ivanov, and V.A. Skryshevsky, Physica E 41, 36 (2008).

https://doi.org/10.1016/j.physe.2008.05.024

H. Wittmer, S. Holten, H. Kliem, and H. Breuer, Phys. Stat. Sol. A 181, 461 (2000).

https://doi.org/10.1002/1521-396X(200010)181:2<461::AID-PSSA461>3.0.CO;2-X

V. Kytin and Th. Dittrich, Phys. Stat. Sol. A 185, 461 (2001).

https://doi.org/10.1002/1521-396X(200106)185:2<461::AID-PSSA461>3.0.CO;2-P

Published

2012-05-30

How to Cite

Milovanov Ю., Gavrilchenko І., Gayvoronsky В., Kuznetsov Г., & Skryshevsky В. (2012). Peculiarities of Current Transport in Titanium Oxide-Silicon Heterostructures. Ukrainian Journal of Physics, 57(5), 545. https://doi.org/10.15407/ujpe57.5.545

Issue

Section

Nanosystems

Most read articles by the same author(s)