Generalization of Polynomial Invariants and Holographic Principle for Knots and Links

Authors

  • A. M. Pavlyuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.07.0673

Keywords:

holographic principle, knots, links, Jones skein relation

Abstract

We formulate the holographic principle for knots and links. For the “space” of all knots and links, torus knots T(2m + 1, 2 ) and torus links L(2m, 2 ) play the role of the “boundary” of this space. Using the holographic principle, we find the skein relation of knots and links with the help of the recurrence relation for polynomial invariants of torus knots T(2m + 1, 2 ) and torus links L(2m, 2 ). As an example of the application of this principle, we derive the Jones skein relation and its generalization with the help of some variants of (q, p)-numbers, related with (q, p)-deformed bosonic oscillators.

References

<ol>

<li> The Interface of Knots and Physics, edited by L.H. Kauffman (Amer. Math. Soc., Providence, RI, 1995).
</li>
<li> L.H. Kauffman, Knots and Physics (World Scientific, Singapore, 2001).
&nbsp;<a href="https://doi.org/10.1142/4256">https://doi.org/10.1142/4256</a>
</li>
<li> M.F. Atiyah, The Geometry and Physics of Knots (Cambridge Univ. Press, Cambridge, 1990).
</li>
<li> E. Witten, Comm. Math. Phys. 121, 351 (1989).
&nbsp;<a href="https://doi.org/10.1007/BF01217730">https://doi.org/10.1007/BF01217730</a>
</li>
<li> Knots and Quantum Gravity, edited by J. Baez (Oxford Univ. Press, Oxford, 1994).
</li>
<li> J. Baez and J.P. Muniain, Gauge Fields, Knots and Gravity (World Scientific, Singapore, 1994).
&nbsp;<a href="https://doi.org/10.1142/2324">https://doi.org/10.1142/2324</a>
</li>
<li> G.'t Hooft, in Proceedings of the Salamfest (ICTP, Trieste, 1993), p. 283; gr-qc/9310026.
</li>
<li> J. Maldacena, Adv. Theor. Math. Phys. 2, 231-252 (1989); hep-th/9802150.
</li>
<li> E. Verlinde, JHEP 1104, 029 (2011); arXiv:1001.0785 [hep-th].
</li>
<li> A.M. Gavrilik and A.M. Pavlyuk, Ukr. J. Phys. 55, 129 (2010); arXiv:0912.4674v2 [math-ph].
</li>
<li> A.M. Pavlyuk, Algebras, Groups and Geometries 29, 151 (2012).
</li>
<li> A. Chakrabarti and R. Jagannathan, J. Phys. A: Math. Gen. 24, L711 (1991).
&nbsp;<a href="https://doi.org/10.1088/0305-4470/24/13/002">https://doi.org/10.1088/0305-4470/24/13/002</a>
</li>
<li> V.F.R. Jones, Bull. AMS 12, 103 (1985).
&nbsp;<a href="https://doi.org/10.1090/S0273-0979-1985-15304-2">https://doi.org/10.1090/S0273-0979-1985-15304-2</a>
</li>
<li> P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millet, and A. Ocneanu, Bull. AMS 12, 239 (1985).
&nbsp;<a href="https://doi.org/10.1090/S0273-0979-1985-15361-3">https://doi.org/10.1090/S0273-0979-1985-15361-3</a>
</li>
<li> A.M. Gavrilik and A.M. Pavlyuk, Ukr. J. Phys. 56, 680 (2011); arXiv:1107.5516v1 [math-ph].
</li>
<li> A.M. Pavlyuk, Ukr. J. Phys. 57, 439 (2012).
</li>

</ol>

Downloads

Published

2018-10-10

How to Cite

Pavlyuk, A. M. (2018). Generalization of Polynomial Invariants and Holographic Principle for Knots and Links. Ukrainian Journal of Physics, 58(7), 673. https://doi.org/10.15407/ujpe58.07.0673

Issue

Section

General problems of theoretical physics