Method for the Calculation of Free Energy in a Three-Dimensional Ising-Like System Taking Into Account a Correction for the Interaction Potential Averaging

Authors

  • I.R. Yukhnovskii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • M.P. Kozlovskii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • I.V. Pylyuk Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.1.80

Keywords:

-

Abstract

The critical behavior of three-dimensional model systems has been studied theoretically. The partition function and the free energy for a one-component spin system have been calculated for a non-Gaussian distribution of order-parameter fluctuations. A specific feature of the proposed method of calculation consists in making allowance for the dependence of the Fourier transform of the interaction potential on the wave vector. Such an approach leads to a nonzero critical exponent η in the correlation function and the renormalization of the values of other critical exponents (for the correlation length, susceptibility, etc.). The calculation of those exponents was carried out with the use of the renormalization-group method and on the basis of obtained recurrence relations for the coefficients of fluctuation distributions in adjacent block structures.

References

K.G. Wilson, Phys. Rev. B 4, 3174 (1971); 4, 3184 (1971).

https://doi.org/10.1103/PhysRevB.4.3184

K.G. Wilson and M.E. Fisher, Phys. Rev. Lett. 28, 240 (1972).

https://doi.org/10.1002/phbl.19720280513

L.P. Kadanoff, Physics 2, 263 (1966).

https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263

A.Z. Patashinskii and V.L. Pokrovskii, Zh. Eksp. Teor. Fiz. 50, 439 (1966).

I.R. Yukhnovskii, Dokl. Akad. Nauk SSSR 232, 312 (1977).

I.R. Yukhnovskii and Yu.K. Rudavskii, Dokl. Akad. Nauk SSSR 233, 579 (1977).

I.R. Yukhnovskii, Teor. Mat. Fiz. 36, 373 (1978).

https://doi.org/10.1007/BF01035756

I.R. Yukhnovskii, Phase Transitions of the Second Order. Collective Variables Method (Naukova Dumka, Kyiv, 1985) (in Russian).

I.R. Yukhnovskii, Phase Transitions of the Second Order. Collective Variables Method ({World Scientific, Singapore, 1987).

https://doi.org/10.1142/0289

I.R. Yukhnovskii, Riv. Nuovo Cim. 12, 1 (1989).

https://doi.org/10.1007/BF02743059

I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Microscopic Theory of Phase Transitions in the Three-Dimensional Systems (Eurosvit, Lviv, 2001) (in Ukrainian).

I.R. Yukhnovskii, Selected Works. Physics (National Univ. "Lviv Politekhnika", Lviv, 2005) (in Ukrainian).

J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363, 223 (2002).

https://doi.org/10.1016/S0370-1573(01)00098-9

L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal, Phys. Rev. B 68, 064421 (2003).

https://doi.org/10.1103/PhysRevB.68.064421

I.V. Pylyuk and M.P. Kozlovskii, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 597 (1991).

I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Phys. Rev. B 66, 134410 (2002).

https://doi.org/10.1103/PhysRevB.66.134410

M.P. Kozlovskii, I.V. Pylyuk, and O.O. Prytula, Nucl. Phys. B 753[FS], 242 (2006).

https://doi.org/10.1016/j.nuclphysb.2006.07.006

I.V. Pylyuk and M.P. Kozlovskii, Physica A 389, 5390 (2010).

https://doi.org/10.1016/j.physa.2010.08.022

M.P. Kozlovsky and I.V. Pylyuk, Preprint ITP-85-23E (Bogolyubov Institute for Theor. Physics, Kiev, 1985).

K.G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).

https://doi.org/10.1016/0370-1573(74)90023-4

M.P. Kozlovskii and Ja.N. Ilnytskii, Preprint ITP-87-100E (Bogolyubov Institute for Theor. Physics, Kiev, 1987).

I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Preprint ITF-88-105R (Bogolyubov Institute for Theor. Physics, Kiev, 1988).

I.R. Yukhnovskii and V.M. Tkachuk, Preprint ITF-81-70R (Bogolyubov Institute for Theor. Physics, Kiev, 1981).

I.R. Yukhnovskii, Ju.K. Rudavskii, and Yu.V. Golovach, Preprint ITF-82-130R (Bogolyubov Institute for Theor. Physics, Kiev, 1982).

I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Z. Naturforsch. 46a, 1 (1991).

https://doi.org/10.1515/zna-1991-1-202

M.P. Kozlovskii, Dopov. Akad. Nauk UkrSSR, Ser. A, No. 10, 58 (1984).

R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).

https://doi.org/10.1088/0305-4470/31/40/006

M. Hasenbusch, Int. J. Mod. Phys. C 12, 911 (2001).

https://doi.org/10.1142/S0129183101002383

M.E. Fisher, The Nature of Critical Points (Univ. of Colorado, Boulder, 1965).

H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971).

Shang-Keng Ma, Modern Theory of Critical Phenomena (Benjamin, New York, 1976).

A.Z. Patashinski and V.L. Pokrovski, Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1982).

D.J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 1984).

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1996).

H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theories (World Scientific, Singapore, 2001). https://doi.org/10.1142/4733

Published

2012-01-30

How to Cite

Yukhnovskii І., Kozlovskii М., & Pylyuk І. (2012). Method for the Calculation of Free Energy in a Three-Dimensional Ising-Like System Taking Into Account a Correction for the Interaction Potential Averaging. Ukrainian Journal of Physics, 57(1), 80. https://doi.org/10.15407/ujpe57.1.80

Issue

Section

General problems of theoretical physics