To the Theory of the Lamb Shift in the Relativistic Hydrogen Atom

Authors

  • A.A. Eremko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • L.S. Brizhik Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V.M. Loktev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe69.8.537

Keywords:

Dirac equation, relativistic hydrogen atom, spinor invariant, radiative correction, modification of the Coulomb law, Lamb shift

Abstract

Radiative corrections which remove the accidental degeneracy in the spectrum of the relativistic hydrogen atom and lead to the modification of the Coulomb law, are calculated within the novel approach, based on the exact solution of the Dirac equation with the Coulomb potential. The energy spectrum of the hydrogen atom is obtained with account for these corrections, and the Lamb shift is calculated for the lowest energy states.

References

P.A.M. Dirac. The Quantum Theory of the Electron. Proc. Roy. Soc. A 117, 610 (1928).

https://doi.org/10.1098/rspa.1928.0023

P.A.M. Dirac. The Principles of Quantum Mechanics (Clarendon Press, 1958).

https://doi.org/10.1063/1.3062610

A.A. Eremko, L.S. Brizhik, V.M. Loktev. Spin relevant invariants and the general solution of the Dirac equation for the Coulomb field. Ann. Phys. 439, 168786 (2022).

https://doi.org/10.1016/j.aop.2022.168786

H.A. Bethe, E.E. Salpeter. Quantum Mechanics of Oneand Two-Electron Atoms. (Springer, 1957).

https://doi.org/10.1007/978-3-662-12869-5

A. Eremko, L. Brizhik, V. Loktev. General solution of the Dirac equation for quasi-two-dimensional electrons. Ann. Phys. 369, 85 (2016).

https://doi.org/10.1016/j.aop.2016.03.008

A.A. Eremko, L.S. Brizhik, V.M. Loktev. On the theory of the Schr¨odinger equation with the full set of relativistic corrections. Low Temp. Phys. 44, 573 (2018).

https://doi.org/10.1063/1.5037561

N.N. Bogoliubov, D.V. Shirkov. Quantum fields. 1st English edition (Addison-Wesley, 1982) [ISBN: 978-0805309836].

V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii. Relativistic Quantum Theory. Part I (Pergamon Press, 1971) [ISBN: 0080160255].

A.I. Akhiezer, V.B. Berestetski. Quantum Electrodynamics (John Wiley & Sons, 1965).

https://doi.org/10.1119/1.1971111

V.P. Gusyninn, E.V. Gorbar. Introductin to Quantum Theory of Gauge Fields (Akademperiodyka, 2023) [ISBN: 978-966-360-487-9] [in Ukrainian].

E.A. Uehling. Polarization effects in the positron theory. Phys. Rev. 48, 55 (1935).

https://doi.org/10.1103/PhysRev.48.55

A.M. Frolov, D.M. Wardlaw. Analytical formula for the Uehling potential. Eur. Phys. J. B 85, 348 (2012).

https://doi.org/10.1140/epjb/e2012-30408-4

V.V. Flambaum, J.S.M. Ginges. Radiative potential and calculations of QED radiative corrections to energy levels and electromagnetic amplitudes in many-electron atoms. Phys. Rev. A 72, 052115 (2005).

https://doi.org/10.1103/PhysRevA.72.052115

J.S.M. Ginges, J.C. Berengut. Atomic many-body effects and Lamb shifts in alkali metals. Phys. Rev. A 93, 052509 (2016).

https://doi.org/10.1103/PhysRevA.93.052509

W. Heisenberg, H. Euler. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714 (1936).

https://doi.org/10.1007/BF01343663

M.E. Peskin, D.V. Schroeder. Renormalization of the electric charge. In An Introduction to Quantum Field Theory (CRC Press, 2018), p. 244.

https://doi.org/10.1201/9780429503559

A.A. Eremko, L.S. Brizhik, V.M. Loktev. Input of the Coulomb law modification to the Lamb shift of the hydrogen atom. ArXiv:2406.03350.

A. Sunaga, M. Salman, T. Saue. 4-component relativistic Hamiltonian with effective QED potentials for molecular calculations. J. Chem. Phys. 157, 164101 (2022).

https://doi.org/10.1063/5.0116140

Table of Integrals, Series and Products (Eigth Edition). Edited by D. Zwillinger, V. Moll, I.S. Gradshteyn, I.M. Ryzhik (Academic Press, 2014).

W.E. Lamb, R.C. Retherford. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241 (1947).

https://doi.org/10.1103/PhysRev.72.241

J. Schwinger. Particles, Sources and Fields, Vol. 2 (Addison-Wesley Publ. Comp., 1973).

M.I. Eides, H. Grotch, V.A. Shelyuto. Theory of light hydrogenlike atoms. Phys. Rep. 342, 63 (2001).

https://doi.org/10.1016/S0370-1573(00)00077-6

R. Pohl, A. Antognini et al. The size of the proton. Nature 466, 213 (2010).

https://doi.org/10.1038/nature09250

A. Antognini, F. Nez et al. Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen. Science 339, 417 (2013).

https://doi.org/10.1126/science.1230016

P.J. Mohr, D.B. Newell, B.N. Taylor. CODATA recommended values of the fundamental physical constants: 2014. J. Phys. Chem. Ref. Data 45, 043102 (2016).

https://doi.org/10.1063/1.4954402

Published

2024-09-18

How to Cite

Eremko, A., Brizhik, L., & Loktev, V. (2024). To the Theory of the Lamb Shift in the Relativistic Hydrogen Atom. Ukrainian Journal of Physics, 69(8), 537. https://doi.org/10.15407/ujpe69.8.537

Issue

Section

General physics

Most read articles by the same author(s)