Deformed Dirac and Shrödinger Equations with Improved Mie-Type Potential for Diatomic Molecules and Fermionic Particles in the Framework of Extended Quantum Mechanics Symmetries
DOI:
https://doi.org/10.15407/ujpe67.7.485Keywords:
Dirac equation, Schr¨odinger equation, Mie-type potential, noncommutative quantum mechanics, star productAbstract
In this study, the bound-state solutions of the deformed Dirac equation (DDE) have been determined with the improved Mie-type potential including an improved Coulomb-like tensor potential (IMTPICLP) under the condition of the spin or pseudospin symmetry in the extended relativistic quantum mechanics (ERQM) symmetries. The IMTPICLP model includes a combination of the terms 1/r3 and 1/r4 which coupled with the couplings (LΘ and L̃︀Θ) between the physical properties of the system with the topological deformations of space-space. In the framework of the parametric Bopp’s shift method and standard perturbation theory, the new relativistic and nonrelativistic energy eigenvalues for the improved Mietype potential have been found. The new obtained values appeared sensitive to the quantum numbers (j, k, l,̃︀ l, s, s,̃︀ m, m̃︀ ), the mixed potential depths (A, B, C, α), and noncommutativity parameters (Θ, σ, χ). The new energy spectra of the improved Kratzer–Fues potential within an improved Coulomb-like tensor interaction and the improved modified Kratzer potential within the Coulomb-like tensor interaction have been derived as particular cases of IMTPICLP. We recovered the usual relativistic and nonrelativistic results from the literature by applying the three simultaneous limits (Θ, σ, χ) → (0, 0, 0). One can notice that our results are in close agreement with the recent studies.
References
O. Aydo˘gdu, R. Sever. Exact solution of the Dirac equation with the Mie-type potential under the pseudospin and spin symmetry limit. Annals of Physics 325 (2), 373 (2010).
https://doi.org/10.1016/j.aop.2009.10.009
M. Hamzavi, H. Hassanabadi, A.A. Rajabi. Exact solution of Dirac equation for Mie-type potential by using Nikiforov-Uvarov method under the pseudospin and spin symmetry limit. Mod. Phys. Lett. A 25 (28), 2447 (2010).
https://doi.org/10.1142/S0217732310033402
M. Hamzavi, A.A. Rajabi, H. Hassanabadi. Exact spin and pseudospin symmetry solutions of the Dirac equation for Mie-type potential including a Coulomb-like tensor potential. Few-Body Syst 48 (2-4), 171 (2010).
https://doi.org/10.1007/s00601-010-0095-7
M.Eshghi, S.M. Ikhdair. Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method. Chin. Phys. B 23 (12), 120304 (2014).
https://doi.org/10.1088/1674-1056/23/12/120304
C.P. Onyenegecha, I.J. Njoku, A. Omame, C.J. Okereke, E. Onyeocha. Dirac equation and thermodynamic properties with the Modified Kratzer potential. Heliyon 7 (9), e08023 (2021).
https://doi.org/10.1016/j.heliyon.2021.e08023
O. Aydo˘gdu, R. Sever. Exact pseudospin symmetric solution of the Dirac equation for pseudoharmonic potential in the presence of tensor potential. Few-Body Syst 47 (3), 193 (2010).
https://doi.org/10.1007/s00601-010-0085-9
D. Agboola. Complete analytical solutions of the Mie-type potentials in N-dimensions. Acta Physica Polonica A 120 (3), 371 (2011).
https://doi.org/10.12693/APhysPolA.120.371
A. Maireche. A complete analytical solution of the Mietype potentials in non-commutative 3-dimensional spaces and phases symmetries. Afr. Rev. Phys. 11, 111 (2016).
A. Maireche. Nonrelativistic atomic spectrum for companied harmonic oscillator potential and its inverse in both NC-2D: RSP. Intern. Lett. Chem., Physics and Astronomy 56, 1 (2015).
https://doi.org/10.18052/www.scipress.com/ILCPA.56.1
A. Maireche. A novel exactly theoretical solvable of bound states of the Dirac-Kratzer-Fues problem with spin and pseudo-spin symmetry. Intern. Frontier Sci. Lett. 10, 8 (2016).
https://doi.org/10.18052/www.scipress.com/IFSL.10.8
A. Maireche. Effects of two-dimensional noncommutative theories on bound states Schr¨odinger diatomic molecules under new modified Kratzer-type interactions. Intern. Lett. Chem., Physics and Astronomy 76, 1 (2017).
https://doi.org/10.18052/www.scipress.com/ILCPA.76.1
A. Maireche. New relativistic bound states for modified pseudoharmonic potential of Dirac equation with spin and pseudo-spin symmetry in one-electron atoms. Afr. Rev. Phys. 12, 130 (2017).
A. Maireche. A new relativistic study for interactions in one-electron atoms (spin 12 particles) with modified Mietype potential. J. Nano- Electron. Phys. 8 4 (1), 04027 (2016).
https://doi.org/10.21272/jnep.8(4(1)).04027
A. Connes, M.R. Douglas, A. Schwarz. Noncommutative geometry and Matrix theory. JHEP 02, 003 (1998).
https://doi.org/10.1088/1126-6708/1998/02/003
H. Falomir, P.A.G. Pisani, F. Vega, D. C'arcamo, F. M'endez, M. Loewe. On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space. J. Phys. A: Math. Theor. 49 (5), 055202 (2016).
https://doi.org/10.1088/1751-8113/49/5/055202
S. Capozziello, G. Lambiase, G. Scarpetta. Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 39, 15 (2000).
https://doi.org/10.1023/A:1003634814685
S. Doplicher, K. Fredenhagen, J.E. Roberts. Spacetime quantization induced by classical gravity. Phys. Lett. B 331 (1-2), 39 (1994).
https://doi.org/10.1016/0370-2693(94)90940-7
E. Witten. Refection on the fate spacetime. Phys. Today 49 (4), 24 (1996).
https://doi.org/10.1063/1.881493
A. Kempf, G. Mangano, R.B. Mann. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52 (2), 1108 (1995).
https://doi.org/10.1103/PhysRevD.52.1108
R.J. Adler, D.I. Santigo. On gravity and the uncertainty principal. Mod. Phys. Lett. A 14 (20), 1371 (1999).
https://doi.org/10.1142/S0217732399001462
T. Kanazawa, G. Lambiase, G. Vilasi, A. Yoshioka. Noncommutative Schwarzschild geometry and generalized uncertainty principle. Eur. Phys. J. C 79, 95 (2019).
https://doi.org/10.1140/epjc/s10052-019-6610-1
F. Scardigli. Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment. Phys. Lett. B 452 (1-2), 39 (1999).
https://doi.org/10.1016/S0370-2693(99)00167-7
H.S. Snyder. Quantized space-time. Phys. Rev. 71, 38 (1947).
https://doi.org/10.1103/PhysRev.71.38
A. Connes. Noncommutative Geometry (Elsevier, 1994) [ISBN: 9780121858605].
A. Connes, J. Lott. Particle models and noncommutative geometry (expanded version). Nucl. Phys. Proc. Suppl. B 18,29 (1991).
https://doi.org/10.1016/0920-5632(91)90120-4
N. Seiberg, E. Witten. String theory and noncommutative geometry. JHEP 1999 (09), 032 (1999).
https://doi.org/10.1088/1126-6708/1999/09/032
P. Nicolini. Noncommutative black holes, the final appeal to quantum gravity: a review. Int. J Mod. Phys. A 24 (07), 1229 (2009).
https://doi.org/10.1142/S0217751X09043353
O. Bertolami, G.J. Rosa, C.M.L. Dearagao, P. Castorina, D. Zappala. Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics. Mod. Phys. Lett. A 21 (10), 795 (2006).
https://doi.org/10.1142/S0217732306019840
E.E. N'Dolo, D.O. Samary, B. Ezinvi, M.N. Hounkonnou. Noncommutative Dirac and Klein-Gordon oscillators in the background of cosmic string: Spectrum and dynamics. Int. J. Geo. Met. Mod. Phys. 17 (05), 2050078 (2020).
https://doi.org/10.1142/S0219887820500784
A. Maireche. New bound-state solutions of the deformed Klien-Gordon and Shrodinger equations for arbitrary lstate with the modified equal vector and scalar Manning-Rosen plus a class of Yukawa potentials in RNCQM and NRNCQM symmetries. J. Phys. Stud. 25 (4), 4301 (2021).
https://doi.org/10.30970/jps.25.4301
Kh.P. Gnatenko, V.M. Tkachuk. Composite system in rotationally invariant noncommutative phase space. Int. J. Mod. Phys. A 33 (07), 1850037 (2018).
https://doi.org/10.1142/S0217751X18500379
P. M. Ho, H.C. Kao. Noncommutative quantum mechanics from noncommutative quantum field theory. Phys. Rev. Lett. 88 (15), 151602-1 (2002 ).
https://doi.org/10.1103/PhysRevLett.88.151602
K. P. Gnatenko. Composite system in noncommutative space and the equivalence principle. Phys. Lett. A 377 (43), 3061 (2013).
https://doi.org/10.1016/j.physleta.2013.09.036
A. Maireche. A theoretical model of deformed Klein-Gordon equation with generalized modified screened Coulomb plus inversely quadratic Yukawa potential in RNCQM symmetries. Few-Body Syst. 62, 12 (2021).
https://doi.org/10.1007/s00601-021-01596-2
A. Maireche. Modified unequal mixture scalar vector Hulth'en-Yukawa potentials model as a quark-antiquark interaction and neutral atoms via relativistic treatment using the improved approximation of the centrifugal term and Bopp's shift method. Few-Body Syst. 61, 30 (2020).
https://doi.org/10.1007/s00601-020-01559-z
E.F. Djema¨ı, H. Smail. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41 (6), 837 (2004).
https://doi.org/10.1088/0253-6102/41/6/837
A. Maireche. Bound state solutions of Klein-Gordon and Schr¨odinger equations with linear combination of Hulth'en and Kratzer potentials. Afr. Rev Phys. 15, 19 (2020).
O. Bertolami, J.G. Rosa, C.M.L. de Arag˜ao, P. Castorina, D. Zappal'a. Noncommutative gravitational quantum well. Phys. Rev. D 72 (2), 025010-1 (2005).
https://doi.org/10.1103/PhysRevD.72.025010
S.I. Vacaru. Exact solutions with noncommutative symmetries in Einstein and gauge gravity. J. Math. Phys. 46 (4), 042503 (2005).
https://doi.org/10.1063/1.1869538
A. Maireche. A New Approach to the approximate analytic solution of the three-dimensional Schr¨odinger equation for Hydrogenic and neutral atoms in the generalized Hellmann potential model. Ukr. J. Phys. 65 (11), 987 (2020).
https://doi.org/10.15407/ujpe65.11.987
J. Zhang. Fractional angular momentum in noncommutative spaces. Phys. Lett. B 584 (1-2), 204 (2004).
https://doi.org/10.1016/j.physletb.2004.01.049
A. Maireche. A new Theoretical Investigations of the Modified Equal Scalar and Vector Manning-Rosen plus quadratic Yukawa Potential within the Deformed KleinGordon and Schr¨odinger Equations using the Improved Approximation of the Centrifugal term and Bopp's shift Method in RNCQM and NRNCQM symmetries. SPIN 11 (4), 2150029 (2021).
https://doi.org/10.1142/S2010324721500296
A. Maireche. The investigation of approximate solutions of Deformed Klein-Fock-Gordon and Schr¨odinger equations under modified equal scalar and vector Manning-Rosen and Yukawa potentials by using the improved approximation of the centrifugal term and Bopp's shift method in NCQM symmetries. Lat. Am. J. Phys. Educ. 15 (2), 2310-1 (2021).
A. Maireche. Bound-state solutions of the modified Klein-Gordon and Schr¨odinger equations for arbitrary l-state with the modified Morse potential in the symmetries of noncommutative quantum mechanics. J. Phys. Stud. 25 (1), 1002 (2021).
https://doi.org/10.30970/jps.25.1002
A. Maireche. Nonrelativistic treatment of Hydrogen-like and neutral atoms subjected to the generalized perturbed Yukawa potential with centrifugal barrier in the symmetries of noncommutative Quantum mechanics. Int. J. Geo. Met. Mod. Phys. 17 (5), 2050067 (2020).
https://doi.org/10.1142/S021988782050067X
S. Aghababaei, G. Rezaei. Energy level splitting of a 2D hydrogen atom with Rashba coupling in non-commutative space. Commun. Theor. Phys. 72, 125101 (2020).
https://doi.org/10.1088/1572-9494/abb7cc
J. Wang, K. Li. The HMW effect in noncommutative quantum mechanics. J. Phys. A Math. Theor. 40 (9), 2197 (2007).
https://doi.org/10.1088/1751-8113/40/9/021
A. Maireche. A theoretical study of the modified equal scalar and vector Manning-Rosen potential within the deformed Klein-Gordon and Schr¨odinger in RNCQM and NRNCQM symmetries. Rev. Mex. Fis. 67 (5), 050702 (2021).
https://doi.org/10.31349/RevMexFis.67.050702
E.M.C. Abreu, J.A. Neto, A.C.R. Mendes C. Neves, W. Oliveira, M.V. Marcial. Lagrangian formulation for noncommutative nonlinear systems. Int. J. Mod. Phys. A 27, 1250053 (2012).
https://doi.org/10.1142/S0217751X12500534
M. Chaichian, Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the Lamb Shift in noncommutative QED. Phys. Rev. Lett. 86 (13), 2716 (2001).
https://doi.org/10.1103/PhysRevLett.86.2716
E.M.C. Abreu, C. Neves, W. Oliveira. Noncommutativity from the symplectic point of view. Int. J. Mod. Phys. A 21, 5359 (2006).
https://doi.org/10.1142/S0217751X06034094
A. Maireche. A model of modified Klein-Gordon equation with modified scalar-vector Yukawa potential. Afr. Rev Phys. 15, 1 (2020).
A. Maireche. Heavy quarkonium systems for the deformed unequal scalar and vector Coulomb-Hulth'en potential within the deformed effective mass Klein-Gordon equation using the improved approximation of the centrifugal term and Bopp's shift method in RNCQM symmetries. Int. J. Geo. Met. Mod. Phys. 18 (13), 2150214 (2021).
https://doi.org/10.1142/S0219887821502145
A. Maireche. Investigations on the relativistic interactions in one-electron atoms with modified Yukawa potential for spin 1/2 particles. Int. Fro. Sc. Lett. 11, 29 (2017).
https://doi.org/10.18052/www.scipress.com/IFSL.11.29
A. Maireche. New relativistic atomic mass spectra of quark (u, d and s) for extended modified Cornell potential in nano and Plank's scales. J. Nano- Electron. Phys. 8 (1), 01020 (2016).
https://doi.org/10.21272/jnep.8(1).01020
Y. Yi, K. Kang, W. Jian-Hua, C. Chi-Yi. Spin-1/2 relativistic particle in a magnetic field in NC phase space. Chin. Phys. C 34 (5), 543 (2010).
https://doi.org/10.1088/1674-1137/34/5/005
N. Seiberg, E. Witten. String theory and noncommutative geometry. JHEP 1999 (09), 032-032 (1999).
https://doi.org/10.1088/1126-6708/1999/09/032
S.M. khdair, R. Sever. Approximate bound state solutions of Dirac equation with Hulth'en potential including Coulomb-like tensor potential. Appl. Math. Com. 216, 911 (2010)
https://doi.org/10.1016/j.amc.2010.01.104
L. Mezincescu. Star Operation in Quantum Mechanics (Cornell University, 2000).
L. Gouba. A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A 31 (19), 1630025 (2016).
https://doi.org/10.1142/S0217751X16300258
F. Bopp. La m'ecanique quantique est-elle une m'ecanique statistique classique particuli'ere. Ann. Inst. Henri Poincar'e 15, 81 (1956).
J. Gamboa, M. Loewe, J.C. Rojas. Noncommutative quantum mechanics. Phys. Rev. D 64, 067901 (2001).
https://doi.org/10.1103/PhysRevD.64.067901
A. Maireche. A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potential. Sri Lankan J. of Phys. 21, 11 (2020).
https://doi.org/10.4038/sljp.v21i1.8069
A. Maireche. Extended of the Schr¨odinger equation with new Coulomb potentials plus linear and harmonic radial terms in the symmetries of noncommutative quantum mechanics. J. Nano-Electron. Phys. 10 (6), 06015-1 (2018).
https://doi.org/10.21272/jnep.10(6).06015
A. Maireche. Heavy light mesons in the symmetries of extended nonrelativistic quark model. Yanbu J. Eng. Sc. 17, 51 (2019).
https://doi.org/10.53370/001c.23732
A. Maireche. A new study of energy levels of hydrogenic atoms and some molecules for new more general exponential screened Coulomb potential. Open Acc J Math Theor Phy. 1 (6), 232 (2018).
https://doi.org/10.15406/oajmtp.2018.01.00040
A. Maireche. A recent study of excited energy levels diatomics for modified more general exponential screened Coulomb potential: Extended quantum mechanics. J. Nano-Electron. Phys. 9 (3), 03021 (2017).
https://doi.org/10.21272/jnep.9(3).03021
A. Maireche. The relativistic and nonrelativistic solutions for the modified unequal mixture of scalar and time-like vector Cornell potentials in the symmetries of noncommutative quantum mechanics. Jordan J. Phys. 14 (1), 59 (2021).
https://doi.org/10.47011/14.1.6
A. Maireche. Solutions of Klein-Gordon equation for the modified central complex potential in the symmetries of noncommutative quantum mechanics. Sri Lankan J. of Phys. 22 (1), 1 (2021).
https://doi.org/10.4038/sljp.v22i1.8079
A. Maireche. Theoretical investigation of the modified screened cosine Kratzer potential via relativistic and nonrelativistic treatment in the NCQM symmetries. Lat. Am. J. Phys. Educ. 14 (3), 3310-1 (2020).
A. Maireche. The Klein-Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space. Mod. Phys. Lett. A. 35 (5), 052050015 (2020).
https://doi.org/10.1142/S0217732320500157
H. Motavalli, A.R. Akbarieh. Klein-Gordon equation for the Coulomb potential in noncommutative space. Mod. Phys. Lett. A 25 (29), 2523 (2010).
https://doi.org/10.1142/S0217732310033529
M. Darroodi, H. Mehraban, H. Hassanabadi, The Klein-Gordon equation with the Kratzer potential in the noncommutative space. Mod. Phys. Lett. A 33 (35), 1850203 (2018).
https://doi.org/10.1142/S0217732318502036
A. Maireche. A new theoretical study of the deformed unequal scalar and vector Hellmann plus modified Kratzer potentials within the deformed Klein-Gordon equation in RNCQM symmetries. Mod. Phys. Lett. A 36 (33), 2150232 (2021).
https://doi.org/10.1142/S0217732321502321
A. Maireche. Diatomic molecules with the improved deformed generalized Deng-Fan potential plus deformed Eckart potential model through the solutions of the modified Klein-Gordon and Schr¨odinger equations within NCQM symmetries. Ukr. J. Phys. 67 (3), 183 (2022).
https://doi.org/10.15407/ujpe67.3.183
A. Maireche. New relativistic and nonrelativistic model of diatomic molecules and fermionic particles interacting with
improved modified Mobius potential in the framework of noncommutative quantum mechanics symmetries. Yanbu J. Eng. Sc. 18 (1), 10 (2021).
https://doi.org/10.53370/001c.28090
A. Maireche. Approximate k-state solutions of the deformed Dirac equation in spatially dependent mass for the improved Eckart potential including the improved Yukawa tensor interaction in ERQM symmetries. Int. J. Geo. Met. Mod. Phys. 19, (06) 2250085 (2022).
https://doi.org/10.1142/S0219887822500852
A. Maireche. Diatomic molecules and fermionic particles with improved Hellmann-generalized morse potential through the solutions of the deformed Klein-Gordon, Dirac and Schr¨odinger equations in extended relativistic quantum mechanics and extended nonrelativistic quantum mechanics symmetries. Rev. Mex. Fis. 68 (2), 020801 (2022).
https://doi.org/10.31349/RevMexFis.68.020801
A. Saidi, M.B. Sedra. Spin-one (1 + 3)-dimensional DKP equation with modified Kratzer potential in the noncommutative space. Mod. Phys. Lett. A 35 (5), 2050014 (2020).
https://doi.org/10.1142/S0217732320500145
A. Houcine, B. Abdelmalek. Solutions of the Duffin-Kemmer equation in non-commutative space of cosmic string and magnetic monopole with allowance for the Aharonov-Bohm and Coulomb potentials. Phys. Part. Nuclei Lett. 16 (3), 195 (2019).
https://doi.org/10.1134/S1547477119030038
Wolfram Research. https://functions.wolfram.com/; https://functions.wolfram.com/.
K. Bencheikh, S. Medjedel, G. Vignale. Current reversals in rapidly rotating ultracold Fermi gases. Phys. Lett. A 89 (6), 063620-1 (2014).
https://doi.org/10.1103/PhysRevA.89.063620
C. Berkdemir, A. Berkdemir, J. Han. Bound state solutions of the Schr¨odinger equation for modified Kratzer's molecular potential. Chem. Phys. Lett. 417 (4-6), 326 (2006).
https://doi.org/10.1016/j.cplett.2005.10.039
J.A. Obu, P.O. Okoi, U.S. Okorie. Relativistic and nonrelativistic treatment of Hulthen-Kratzer potential model in D-dimensions. Ind. J. Phys. 95, 505 (2019).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.