Вплив температури та тиску на термодинамічний коефіцієнт (∂V/∂T)p води

Автор(и)

  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics
  • Ye.G. Rudnikov Taras Shevchenko National University of Kyiv, Faculty of Physics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.15407/ujpe68.2.122

Ключові слова:

вода, аргон, коефiцiєнт об’ємного розширення, крива спiвiснування рiдина–пара, крива спiвiснування рiдина–тверде тiло, водневi зв’язки

Анотація

На основi лiтературних даних проведено розрахунки та аналiз температурних i баричних залежностей термодинамiчного коефiцiєнта (∂V/∂T)P для води у станi рiдини. Проведено порiвняння вказаного коефiцiєнта для води та аргону. З урахуванням принципу вiдповiдних станiв пiдтверджено iснування областi термодинамiчної подiбностi мiж водою та аргоном. При цьому iснує область, в якiй зазначена подiбнiсть мiж водою та аргоном не спостерiгається i наявна особлива поведiнка термодинамiчних властивостей води. Так, у води крива температурної залежностi (∂V/∂T)P уздовж лiнiї рiвноваги рiдина–пара має точку перегину за температури (91,0 ± 0,2)C, чого не спостерiгається в аргонi. Iснування для води точки перегину кривої (∂V/∂T)P приводить до вiд’ємних значень (∂V/∂T)P при температурах, нижчих 3,98C. Крiм того, наявнiсть точки перегину на вказанiй температурнiй залежностi приводить до перетину температурних залежностей сiмейства iзобар (∂V/∂T)P у водi при температурi (42, 0 ± 0, 2)C. На вiдмiну вiд цього, кривi температурної залежностi (∂V/∂T)P аргону уздовж лiнiї рiвноваги рiдина–пара не мають вiдповiдної точки перегину.

Посилання

G.M. Kontogeorgis, A. Holster, N. Kottaki, E. Tsochantaris, F. Topsøe, J. Poulsen, M. Bache, X. Liang, N.S. Blom and J. Kronholm. Water structure, properties and some applications. A review. Chem. Thermodyn. Therm. Analys. 6, 100053 (2022).

https://doi.org/10.1016/j.ctta.2022.100053

H. Tanaka. Roles of liquid structural ordering in glass transition, crystallization, and water's anomalies. J. NonCryst. Solids X 13, 100076 (2022).

https://doi.org/10.1016/j.nocx.2021.100076

A. Nilsson, L. Pettersson. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).

https://doi.org/10.1038/ncomms9998

V. Pogorelov, I. Doroshenko, G. Pitsevich, V. Balevicius, V. Sablinskas, B. Krivenko, L.G.M. Pettersson. From clusters to condensed phase - FT IR studies of water. J. Mol. Liq. 235, 7 (2017).

https://doi.org/10.1016/j.molliq.2016.12.037

E.N. Kozlovskaya, G.A. Pitsevich, A.E. Malevich, O.P. Doroshenko, V.E. Pogorelov, I.Yu. Doroshenko, V. Balevicius, V. Sablinskas, A.A. Kamnev. Raman spectroscopic and theoretical study of liquid and solid water within the spectral region 1600-2300 cm−1. Spectrochim. Acta. A 196, 406 (2018).

https://doi.org/10.1016/j.saa.2018.01.071

V.I. Petrenko, M.V. Avdeev, L. Alm'asy, L.A. Bulavin, V.L. Aksenov, L. Rosta, V.M. Garamus. Interaction of mono-carboxylic acids in benzene studied by small-angle neutron scattering. Colloids and Surfaces A: Physicochem. Eng. Aspects 337, 91 (2009).

https://doi.org/10.1016/j.colsurfa.2008.12.001

O.A. Kyzyma, T.O. Kyrey, M.V. Avdeev, M.V. Korobov, L.A. Bulavin, V.L. Aksenov. Non-reversible solvatochromism in N-methyl-2-pyrrolidone/toluene mixed solutions of fullerene C60. Chem. Phys. Lett. 556, 178 (2013).

https://doi.org/10.1016/j.cplett.2012.11.040

L. Meln'ikov'a, V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L. Alm'asy, O.I. Ivankov, L.A. Bulavin, Z. Mitr'oov'a, P. Kopˇcansk'y. Effect of iron oxide loading on magnetoferritin structure in solution asrevealed by SAXS and SANS. Colloids and Surfaces B: Biointerfaces 123, 82 (2014).

https://doi.org/10.1016/j.colsurfb.2014.08.032

Ch. Tegeler, R. Span, W. Wagner. A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data. 28 (3), 779 (1999).

https://doi.org/10.1063/1.556037

R. Span, W. Wagner. Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24 (1), 41 (2003).

F. Mallamace, C. Corsaro, H.E. Stanley. A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water. Sci. Rep. 2, 993 (2012).

https://doi.org/10.1038/srep00993

L.N. Dzhavadov, V.V. Brazhkin, Yu.D. Fomin, V.N. Ryzhov, E.N. Tsiok. Experimental study of water thermodynamics up to 1.2 GPa and 473 K. J. Chemi. Phys. 152, 154501 (2020).

https://doi.org/10.1063/5.0002720

F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, H.E. Stanley. Thermodynamic properties of bulk and confined water. J. Chem. Phys. 141, 18C504 (2014).

https://doi.org/10.1063/1.4895548

J.H.S. Lee, K. Ramamurthi. Fundamentals of Thermodynamics (CRC Press, 2022) [ISBN: 1032123125, 9781032123127].

C. Yaws. Thermophysical Properties of Chemicals and Hydrocarbons. Second Edition (Gulf Professional Publishing, 2014) [ISBN: 978-0-323-28659-6].

M.Z. Southard, D.W. Green. Perry's Chemical Engineers' Handbook (Mcgraw-Hill Education, 2019) [ISBN: 9780071834087].

https://trc.nist.gov/refprop/miniref/miniref.htm.

https://www.nist.gov/programs-projects/reference-fluidthermodynamic-and-transport-properties-databaserefprop.

https://webbook.nist.gov/chemistry/fluid.

http://www.coolprop.org.

https://trc.nist.gov/tde.html.

https://wtt-pro.nist.gov/wtt-pro.

https://www.molinstincts.com.

http://www.chemrtp.com.

I.I. Novikov. Thermodynamic similarity and prediction of the properties and characteristics of substances and processes. J. Eng. Phys. Fundam. Thermodyn. 53, 1227 (1987).

https://doi.org/10.1007/BF00871080

H.W. Xiang. The Corresponding-States Principle and Its Practice. Thermodynamic, Transport and Surface Properties of Fluids. (Elsevier Science, 2005) [ISBN: 978-0-444-52062-3].

V. Diky, J.P. O'Connell, J. Abildskov, K. Kroenlein, M. Frenkel. Representation and validation of liquid densities for pure compounds and mixtures. J. Chem. Eng. Data. 60, 3545 (2015).

https://doi.org/10.1021/acs.jced.5b00477

P.M. Kessel'man. Modification of the cell model and the equation of state of liquids. J. Eng. Phys. 54, 50 (1988).

https://doi.org/10.1007/BF00870226

B.E. Poling, J.M. Prausnitz, J.P. O'Connell. The Properties of Gases and Liquids. Fifth Edition (McGraw-Hill Professional, 2000) [ISBN: 0070116822].

Sh. Wang, H. Xiang, B. Han. The modification and generalization of BWR equation. Fluid Phase Equilibr. 181, 71 (2001).

https://doi.org/10.1016/S0378-3812(01)00359-4

M. Frenkel, K.N. Marsh, K.N. Marsh, J.H. Dymond, R.C. Wilhoit, K.C. Wong. Virial Coefficients of Pure Gases (Springer, 2002) [ISBN: 3540433457].

https://doi.org/10.1007/b71692

J.D. Dymond, R.C. Wilhoit, K.N. Marsh, K.N. Marsh, M. Fenkel. Virial Coefficients of Pure Gases and Mixtures (Springer, 2003) [ISBN: 3540443401].

F. Franks. Water: A Matrix of Life (Royal Society of Chemistry, 2000) [ISBN: 978-0-85404-583-9].

P. Gallo, K. Amann-Winkel, C.A. Angell, M.A. Anisimov, F. Caupin, Ch. Chakravarty, E. Lascaris, T. Loerting, A.Z. Panagiotopoulos, J. Russo, J.A. Sellberg, H.E. Stanley, H. Tanaka, C. Vega, L. Xu, L.G.M. Pettersson. Water: A tale of two liquids. Chem. Rev. 116, 7463 (2016).

https://doi.org/10.1021/acs.chemrev.5b00750

J. Russo, H. Tanaka. Understanding water's anomalies with locally favoured structures. Nat. Commun. 5, 3556 (2014).

https://doi.org/10.1038/ncomms4556

R. Shi, H. Tanaka. Direct evidence in the scattering function for the coexistence of two types of local structures in liquid water. J. Am. Chem. Soc. 142, 2868 (2020).

https://doi.org/10.1021/jacs.9b11211

Zhipeng Jin, Jiangtao Zhao, Gang Chen, Guo Chen, Zhenlin Luo, Lei Xu. Revealing the three-component structure of water with principal component analysis (PCA) of X-ray spectra. Soft Matter 18, 7486 (2022).

https://doi.org/10.1039/D2SM00576J

A.I. Fisenko, N.P. Malomuzh, A.V. Oleynik. To what extent are thermodynamic properties of water argon-like? Chem. Phys. Lett. 450, 297 (2008).

https://doi.org/10.1016/j.cplett.2007.11.036

I.V. Zhyganiuk, M.P. Malomuzh. Physical nature of hydrogen bond. Ukr. J. Phys. 60, 960 (2015).

https://doi.org/10.15407/ujpe60.09.0960

L.A. Bulavin, V.Ya. Gotsulskyi, N.P. Malomuzh, A.I. Fisenko. Crucial role of water in the formation of basic properties of living matter. Ukr. J. Phys. 65, 794 (2020).

https://doi.org/10.15407/ujpe65.9.794

N.K. Alphonse, S.R. Dillon, R.C. Dougherty, D.K. Galligan, L.N. Howard. Direct raman evidence for a weak continuous phase transition in liquid water. J. Phys. Chem. A 110, 7577 (2006).

https://doi.org/10.1021/jp062009e

L.B. Skinner, C.J. Benmore, J.C. Neuefeind, J.B. Parise. The structure of water around the compressibility minimum. J. Chem. Phys. 141, 214507 (2014).

https://doi.org/10.1063/1.4902412

L. Labrador-P'aez, C. Mingoes, F. Jaque, P. Haro-Gonz'alez, H. Bazin, Ju.M. Zwier, D. Jaque, N. Hildebrandt. pH dependence of water anomaly temperature investigated by Eu(III) cryptate luminescence. Analyt. Bioanalyt. Chem. 412, 73 (2020).

https://doi.org/10.1007/s00216-019-02215-0

J. Catal'an, J.A. Gonzalo. Liquid water changes its structure at 43∘C. Chem. Phys. Lett. 679, 86 (2017).

https://doi.org/10.1016/j.cplett.2017.04.092

J.C. del Valle, E. Camarillo, L.M. Maestro, J.A. Gonzalo, C. Arag'o, M. Marqu'es, D. Jaque, G. Lifante, J.G. Sol'e, K. Santacruz-G'omez, R.C. Carrillo-Torres, F. Jaque. Dielectric anomalous response of water at 60 ∘C. Philos. Mag. A 95, 683 (2015).

https://doi.org/10.1080/14786435.2014.1000419

L.S. Shraiber. Experimental investigation ofthe thermal dependence of the piezo-optical coefficient of water between 5 and 90 ∘C. Israel J. Chem. 13, 181 (1975).

https://doi.org/10.1002/ijch.197500026

L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem Phys. Lett. 453, 183 (2008).

https://doi.org/10.1016/j.cplett.2008.01.028

L.P. Singh, B. Issenmann, F. Caupin. Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water. Proc. Natl Acad. Sci. USA 114, 4312 (2017).

https://doi.org/10.1073/pnas.1619501114

L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137, 1 (2008).

https://doi.org/10.1016/j.molliq.2007.05.003

O.V. Khorolskyi, A.V. Kryvoruchko. Non-trivial behavior of the acid-base balance of pure water near the temperature of its dynamic phase transition. Ukr. J. Phys. 66, 972 (2021).

https://doi.org/10.15407/ujpe66.11.972

L.A. Bulavin, N.P. Malomuzh, O.V. Khorolskyi. Temperature and concentration dependences of pH in aqueous NaCl solutions with dissolved atmospheric CO2. Ukr. J. Phys. 67, 833 (2022).

https://doi.org/10.15407/ujpe67.12.833

Опубліковано

2023-04-20

Як цитувати

Bulavin, L., & Rudnikov, Y. (2023). Вплив температури та тиску на термодинамічний коефіцієнт (∂V/∂T)p води. Український фізичний журнал, 68(2), 122. https://doi.org/10.15407/ujpe68.2.122

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика

Статті цього автора (авторів), які найбільше читають

<< < 1 2 3 4 5