Features of Gelation and Aggregation in Aqueous Solutions of Hydroxypropyl Cellulose with NaCl, NaI, and AgNO3 Salts

Authors

  • V.I. Kovalchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • Yu.F. Zabashta Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe69.3.207

Keywords:

hydroxypropyl cellulose, salts, gel formation, aggregation

Abstract

Using the turbidimetric method and the method of static light scattering, the features of gelation and aggregation in 2 wt% and 0.2 wt% aqueous solutions of hydroxypropyl cellulose (HPC) with NaCl, NaI, and AgNO3 salts have been studied. It is found that the introduction of these salts into the 2% solution reduces the coefficient of surface tension at the interface between the sol and gel phases, decreases the lower critical solution temperature (LCST), and slows down the sol-gel transition rate. From the data on static light scattering, it follows that in the dilute (1 : 10) aqueous solutions of HPC at temperatures above the LCST and in the presence of salts, there arise supramolecular associates (clusters) that are several times larger than the wavelength of visible light. The precipitation of polymer is observed. It is shown that the intensity of reflected light can be described as a function of the cluster size in the framework of the Mie scattering theory. It is found that the density of polymer aggregates in the AgNO3 solution was the highest among the studied specimens, which can be explained by the reduction of silver nitrate to metal. The sedimentation of HPC clusters containing silver nanoparticles can be used for creating composite polymer films with the bactericidal and fungicidal activities.

References

T. Okano. Biorelated Polymers and Gels: Controlled Release and Applications in Biomedical Engineering (Polymers, Interfaces and Biomaterials) (Academic Press, 1998) [ISBN: 978-0125250900].

K. Kamide. Cellulose and Cellulose Derivatives: Molecular Characterization and its Applications (Elsevier Science, 2005) [ISBN: 978-0080454443].

S.M.F. Kabir, P.P. Sikdar, B. Haque, M.A.R. Bhuiyan, A. Ali, M.N. Islam. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 7, 153 (2018).

https://doi.org/10.1007/s40204-018-0095-0

C.A. Bishop. Vacuum Deposition onto Webs, Films and Foils (Elsevier Inc., 2016) [ISBN: 978-0323296441].

M. Lazarenko, A. Alekseev, Yu. Zabashta, S. Tkachev, V. Kovalchuk, D. Andrusenko, Yu. Grabovsky, L. Bulavin. Estimation of water content in cellulose materials. Cellul. Chem. Technol. 54, 199 (2020).

R. Barbucci. Hydrogels: Biological Properties and Applications (Springer-Verlag Italia, 2009) [ISBN: 978-8847011038].

https://doi.org/10.1007/978-88-470-1104-5

S. Rimmer. Biomedical Hydrogels: Biochemistry, Manufacture and Medical Applications (Woodhead Publ., 2016) [ISBN: 978-0081017418].

N.A. Peppas. Hydrogels in Medicine and Pharmacy: Properties and Applications (Routledge Revivals) (CRC Press Inc., 2019) [ISBN: 978-0367261115].

D.C. Harsh, S.H. Gehrke. Controlling the swelling characteristics of temperature-sensitive cellulose ether hydrogels. J. Control. Release 17, 175 (1991).

https://doi.org/10.1016/0168-3659(91)90057-K

Z. Zhang, L. Chen, C. Zhao, Y. Bai, M. Deng, H. Shan, X. Zhuang, X. Chen, X. Jing. Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications. Polymer 52, 676 (2011).

https://doi.org/10.1016/j.polymer.2010.12.048

Y. Bai, Z. Zhang, A. Zhang, L. Chen, C. He, X. Zhuang, X. Chen. Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (l-glutamic acid)-based microgels for oral insulin controlled release. Carbohydr. Polym. 89, 1207 (2012).

https://doi.org/10.1016/j.carbpol.2012.03.095

A. Nakamura, R. Ogai, K. Murakami. Development of smart window using an hydroxypropyl cellulose-acrylamide hydrogel and evaluation of weathering resistance and heat shielding effect. Sol. Energy Mater Sol. Cells. 232, 111348 (2021).

https://doi.org/10.1016/j.solmat.2021.111348

E.S. Abdel-Halim, S.S. Al-Deyab. Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydr. Polym. 86, 1615 (2011).

https://doi.org/10.1016/j.carbpol.2011.06.072

A. Salama, R.E. Abouzeid, M.E. Owda, I. Cruz-Maya, V. Guarino. Cellulose-silver composites materials: Preparation and applications. Biomolecules 11, 1684 (2021).

https://doi.org/10.3390/biom11111684

S.N.A. Bukhari, M.A. Hussain, A. Shah, I. Jantan, M.R. Shah, M.N. Tahir, R. Ahmad. Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles. Int. J. Nanomed. 10, 2079 (2015).

https://doi.org/10.2147/IJN.S75874

T. Suwan, S. Khongkhunthian, S. Okonogi. Silver nanoparticles fabricated by reducing property of cellulose derivatives. Drug Discov. Ther. 13, 70 (2019).

https://doi.org/10.5582/ddt.2019.01021

G. Biliuta, A.-C. Bost˘anaru-Iliescu, M. Mare¸s, C. PavlovEnescu, V. N˘astas˘a, O. Burduniuc, S. Coseri. Antibacterial and antifungal silver nanoparticles with tunable size embedded in various cellulose-based matrice. Molecules 27, 6680 (2022).

https://doi.org/10.3390/molecules27196680

Hydroxypropyl Cellulose. https://www.alfa.com/en/catalog/043400/ (accessed on February 22, 2024).

V.I. Kovalchuk, O.M. Alekseev, M.M. Lazarenko. Turbidimetric monitoring of phase separation in aqueous solutions of thermoresponsive polymers. J. Nano- Electron. Phys. 14, 01004 (2021).

https://doi.org/10.21272/jnep.14(1).01004

V.I. Kovalchuk. Phase separation dynamics in aqueous solutions of thermoresponsive polymers. Cond. Matter Phys. 24, 43601 (2021).

https://doi.org/10.5488/CMP.24.43601

Yu.F. Zabashta, V.I. Kovalchuk, L.A. Bulavin. Kinetics of the first-order phase transition in a varying temperature field. Ukr. J. Phys. 66, 978 (2021).

https://doi.org/10.15407/ujpe66.11.978

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Determination of the surface tension coefficient of polymer gel. Ukr. J. Phys. 67, 365 (2022).

https://doi.org/10.15407/ujpe67.5.365

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, L.A. Bulavin. The structure of polymer clusters in aqueous solutions of hydroxypropylcellulose. Ukr. J. Phys. 64, 238 (2019).

https://doi.org/10.15407/ujpe64.3.238

S.V. Troshenkova, E.S. Sashina, N.P. Novoselov, K.-F. Arndt. Light scattering in diluted solutions of cellulose and hydroxypropylcellulose in 1-ethyl-3-methylimidazolium acetate. Rus. J. Gen. Chem. 80, 501 (2010).

https://doi.org/10.1134/S1070363210030229

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, E.G. Rudnikov, L.A. Bulavin. Structural transition in dilute solutions of rod-like macromolecules. Ukr. J. Phys. 65, 50 (2020).

https://doi.org/10.15407/ujpe65.1.50

S.A. Vshivkov. Phase Transitions and Structure of Polymer Systems in External Fields (Cambridge Scholars Publishing, 2019) [ISBN: 978-1527532960].

P.J. Flory. Principles of Polymer Chemistry (Cornell University Press, 1954) [ISBN: 978-0801401343].

M.M. Lazarenko, O.M. Alekseev, S.G. Nedilko, A.O. Sobchuk, V.I. Kovalchuk, S.V. Gryn, V.P. Scherbatskyi, S.Yu. Tkachev, D.A. Andrusenko, E.G. Rudnikov, A.V. Brytan, K.S. Yablochkova, E.A. Lysenkov, R.V. Dinzhos, T. Sabu, T.R. Abraham. Impact of the alkali metals ions on the dielectric relaxation and phase transitions in water solutions of the hydroxypropylcellulose. In: Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications. Selected Proceedings of the 10th International Conference on Nanotechnologies and Nanomaterials (NANO2022), 25-27 August 2022, Ukraine (Springer, 2023), p. 37.

https://doi.org/10.1007/978-3-031-42708-4_3

G. Mie. Beitr¨age zur Optik tr¨uber Medien, speziell kolloidaler Metall¨osungen. Ann. Phys. 330, 377 (1908).

https://doi.org/10.1002/andp.19083300302

D. Tzarouchis, A. Sihvola. Light scattering by a dielectric sphere: Perspectives on the Mie resonances. Appl. Sci. 8, 184 (2018).

https://doi.org/10.3390/app8020184

M. Kerker, D.S. Wang, C.L. Giles. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765 (1983).

https://doi.org/10.1364/JOSA.73.000765

Ch. M¨atzler. MATLAB Functions for Mie Scattering and Absorption (Institute of Appl. Phys.: Bern, Switzerland, 2002), Research Report No. 2002-11.

Mie Scattering Calculator. https://omlc.org/calc/mie_calc.html (accessed on February 22, 2024).

A.A. Maklakova, V.G. Kulichikhin, A.Y. Malkin. The formation and elasticity of a hydroxypropyl cellulose film at a water-air interface. Colloid J. 81, 696 (2019).

https://doi.org/10.1134/S1061933X19060103

M. Lazarenko, S. Nedilko, S. Gryn, V. Scherbatskyi, V. Kovalchuk, M. Lazarenko, A. Sobchuk, D. Andrusenko, O. Alekseev. Influence of Na+ and Cl− ions on the properties of hydroxypropyl cellulose solutions. In: Proc. of the 2022 IEEE 41st Int. Conf. on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, October 10-14, 2022, p. 418.

https://doi.org/10.1109/ELNANO54667.2022.9927040

A.R. Khokhlov, E.E. Dormidontova. Self-organization in ion-containing polymer systems. Phys.-Uspekhi 40, 109 (1997).

https://doi.org/10.1070/PU1997v040n02ABEH000191

L.A. Bulavin, N.I. Lebovka, Yu.A. Kyslyi, S.V. Khrapatyi, A.I. Goncharuk, I.A. Mel'nyk, V.I. Koval'chuk. Microstructural, rheological, and conductometric studies of multiwalled carbon nanotube suspensions in glycerol. Ukr. J. Phys. 56, 217 (2011).

N.I. Lebovka, Yu.Yu. Tarasevich, L.A. Bulavin, V.I. Kovalchuk, N.V. Vygornitskii. Sedimentation of a suspension of rods: Monte Carlo simulation of a continuous twodimensional problem. Phys. Rev. E 99, 052135 (2019).

https://doi.org/10.1103/PhysRevE.99.052135

M. Stoian, T. Maurer, S. Lamri, I. Fechete. Techniques of preparation of thin films: Catalytic combustion. Catalysts 11, 1530 (2021).

https://doi.org/10.3390/catal11121530

C. Trinh, Y. Wei, A. Yadav, M. Muske, N. Grimm, Z. Li, L. Thum, D. Wallacher, R. Schl¨ogl, K. Skorupska, R. Schlatmann, D. Amkreutz. Reactor design for thin film catalyst activity characterization. Chem. Eng. J. 477, 146926 (2023).

https://doi.org/10.1016/j.cej.2023.146926

Published

2024-04-17

How to Cite

Kovalchuk, V., Zabashta, Y., & Bulavin, L. (2024). Features of Gelation and Aggregation in Aqueous Solutions of Hydroxypropyl Cellulose with NaCl, NaI, and AgNO3 Salts. Ukrainian Journal of Physics, 69(3), 207. https://doi.org/10.15407/ujpe69.3.207

Issue

Section

Liquid crystals and polymers

Most read articles by the same author(s)

1 2 3 4 5 > >>