Deformation and the Structure of Cartilage Tissue

Authors

  • Yu.F. Zabashta Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.I. Kovalchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O.S. Svechnikova Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.Yu. Vergun Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe69.5.329

Keywords:

cartilage tissue, compliance tensor, shear modulus, Young’s modulus

Abstract

We propose a model of the structure of cartilage tissue which is considered as a set of local equilibrium regions. Every region is a lattice formed by plates (proteoglycan aggregates) and collagen fibers. A deformation of cartilage tissue under the action of an external load mainly occurs through the bending of chains entering the content of proteoglycan aggregates. Formulas for the shear and Young’s moduli of cartilage tissue have been derived. It is shown that these parameters are reciprocal to the square of the collagen fiber diameter, and their values are equal to 106 Pa by order of magnitude, which agrees with experimental data.

References

B. Dudas. Human Histology: A Text and Atlas for Physicians and Scientists (Academic Press, 2023).

C. Erggelet, M. Steinwachs. Gelenkknorpeldefekte (Steinkopff-Verlag, 2001).

https://doi.org/10.1007/978-3-642-57716-1

P.J. Roughley, J.S. Mort. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthopaed. 1, 8 (2014).

https://doi.org/10.1186/s40634-014-0008-7

J.M. Mansour. Biomechanics of cartilage. In: Kinesiology: The Mechanics and Pathomechanics of Human Movement. Edited by C.A. Oatis, 2nd edition (Lippincott Williams and Wilkins, 2008), p. 66.

J.D. Bronzino, D.R. Peterson. The Biomedical Engineering Handbook: Four Volume Set., 4th edition (CRC Press, 2019).

J. Eschweiler, N. Horn, B. Rath, M. Betsch, A. Baroncini, M. Tingart, F. Migliorini. The biomechanics of cartilage - An overview. Life 11, 302 (2021).

https://doi.org/10.3390/life11040302

A. Eskelinen. Biomechanics and Inflammation - Regulators of Articular Cartilage Degradation: Models Aiming Towards Comprehensive Prediction of Post-Traumatic Osteoarthritis Progression. Academic dissertation (University of Eastern Finland, 2022).

Cartilage Tissue and Knee Joint Biomechanics: Fundamentals, Characterization and Modelling. Edited by A.R. Nochehdehi, F. Nemavhola, S. Thomas, H.J. Maria (Elsevier, 2024) [ISBN: 978-0323905978].

E. Belluzzi, S. Todros, A. Pozzuoli, P. Ruggieri, E.L. Carniel, A. Berardo. Human cartilage biomechanics: Experimental and theoretical approaches towards the identification of mechanical properties in healthy and osteoarthritic conditions. Processes 11, 1014 (2023).

https://doi.org/10.3390/pr11041014

V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102, 73 (1980).

https://doi.org/10.1115/1.3138202

T. Osswald, N. Rudolph. Polymer Rheology: From Molecular Structure to Polymer Process (Carl Hanser Verlag, 2013) [ISBN: 978-1569905173].

https://doi.org/10.3139/9781569905234.fm

M. Lazarenko, A. Alekseev, Yu. Zabashta, S. Tkachev, V. Kovalchuk, D. Andrusenko, Yu. Grabovsky, L. Bulavin. Estimation of water content in cellulose materials. Cellul. Chem. Technol. 54, 199 (2020).

Yu.F. Zabashta, V.I. Kovalchuk, L.A. Bulavin. Kinetics of the first-order phase transition in a varying temperature field. Ukr. J. Phys. 66, 978 (2021).

https://doi.org/10.15407/ujpe66.11.978

V.I. Kovalchuk. Phase separation dynamics in aqueous solutions of thermoresponsive polymers. Cond. Matt. Phys. 24, 43601 (2021).

https://doi.org/10.5488/CMP.24.43601

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Determination of the surface tension coefficient of polymer gel. Ukr. J. Phys. 67, 365 (2022).

https://doi.org/10.15407/ujpe67.5.365

V.I. Kovalchuk, O.M. Alekseev, M.M. Lazarenko. Turbidimetric monitoring of phase separation in aqueous solutions of thermoresponsive polymers. J. Nano- Electron. Phys. 14, 01004 (2022).

https://doi.org/10.21272/jnep.14(1).01004

A.N. Gent, A.G. Thomas. Mechanics of foamed elastic materials. Rubber Chem. Technol. 36, 597 (1963).

https://doi.org/10.5254/1.3539591

V.A. Matonis. Elastic behaviour of low density rigid foams in structural applications. Soc. Plast. Eng. J. 20, 1024 (1964).

F.C. Phillips. An Introduction to Crystallography. 4th edition (Halsted Press a Diviision of John Wilet and Sons, 1971) [ISBN: 978-0050023587].

L.D. Landau, L.P. Pitaevskii, A.M. Kosevich, E.M. Lifshitz. Theory of Elasticity: Volume 7 (Theoretical Physics). 3rd edition (Butterworth-Heinemann, 1986) [ISBN: 978-0750626330].

P.J. Flory. Statistical Mechanics of Chain Molecules (Interscience Publishers Inc., 1969) [ISBN: 978-0470264959].

https://doi.org/10.1002/bip.1969.360080514

C.Y. Liang, S. Krimm, G.B.B.M. Sutherland. Infrared spectra of high polymers. I. Experimental methods and general theory. J. Chem. Phys. 25, 543 (1956).

https://doi.org/10.1063/1.1742962

Published

2024-06-26

How to Cite

Zabashta, Y., Kovalchuk, V., Svechnikova, O., Vergun, L., & Bulavin, L. (2024). Deformation and the Structure of Cartilage Tissue. Ukrainian Journal of Physics, 69(5), 329. https://doi.org/10.15407/ujpe69.5.329

Issue

Section

Liquid crystals and polymers

Most read articles by the same author(s)

1 2 3 4 5 > >>