Фазовий перехід першого роду в рамках коміркової моделі плину: області зміни хімічного потенціалу та відповідні густини

Автор(и)

  • I.V. Pylyuk Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • M.P. Kozlovskii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.1.54

Ключові слова:

комiркова модель плину, хiмiчний потенцiал, густина, рiвняння стану, бiнодаль

Анотація

Роботу присвячено мiкроскопiчному опису поведiнки плинного середовища в безпосередньому околi критичної точки, де теоретичнi та експериментальнi дослiдження важко проводити. Для температур T < TC видiлено i проаналiзовано областi змiни хiмiчного потенцiалу та густини. Рiвняння стану комiркової моделi плину у змiнних температура–хiмiчний потенцiал записано з використанням функцiй Хевiсайда. Дане рiвняння подано також у термiнах змiнних температура–густина. В результатi дослiдження зв’язку мiж густиною та хiмiчним потенцiалом отримано рiвняння для бiнодалi в безпосереднiй близькостi до критичної точки.

Посилання

C.-L. Lee, G. Stell, J.S. Høye. A simple SCOZA for simple fluids. J. Mol. Liq. 112, 13 (2004).

https://doi.org/10.1016/j.molliq.2003.11.004

C.E. Bertrand, J.F. Nicoll, M.A. Anisimov. Comparison of complete scaling and a field-theoretic treatment of asymmetric fluid criticality. Phys. Rev. E 85, 031131 (2012).

https://doi.org/10.1103/PhysRevE.85.031131

A. Parola, L. Reatto. Recent developments of the hierarchical reference theory of fluids and its relation to the renormalization group. Mol. Phys. 110, 2859 (2012).

https://doi.org/10.1080/00268976.2012.666573

I.R. Yukhnovskii. The phase transition of the first order in the critical region of the gas-liquid system. Condens. Matter Phys. 17, 43001 (2014).

https://doi.org/10.5488/CMP.17.43001

T.J. Yoon, Y.-W. Lee. Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. J. Supercrit. Fluids 134, 21 (2018).

https://doi.org/10.1016/j.supflu.2017.11.022

L.F. Vega. Perspectives on molecular modeling of supercritical fluids: From equations of state to molecular simulations. Recent advances, remaining challenges and opportunities. J. Supercrit. Fluids 134, 41 (2018).

https://doi.org/10.1016/j.supflu.2017.12.025

A. Oleinikova, L. Bulavin, V. Pipich. Critical anomaly of shear viscosity in a mixture with an ionic impurity. Chem. Phys. Lett. 278, 121 (1997).

https://doi.org/10.1016/S0009-2614(97)00945-7

S. Pittois, B. Van Roie, C. Glorieux, J. Thoen. Thermal conductivity, thermal effusivity, and specific heat capacity near the lower critical point of the binary liquid mixture n-butoxyethanol-water. J.Chem. Phys. 121, 1866 (2004).

https://doi.org/10.1063/1.1765652

M.P. Kozlovskii, I.V. Pylyuk, O.A. Dobush. The equation of state of a cell fluid model in the supercritical region. Condens. Matter Phys. 21, 43502 (2018).

https://doi.org/10.5488/CMP.21.43502

I.V. Pylyuk. Fluid critical behavior at liquid-gas phase transition: Analytic method for microscopic description. J. Mol. Liq. 310, 112933 (2020).

https://doi.org/10.1016/j.molliq.2020.112933

M. Kozlovskii, O. Dobush. Representation of the grand partition function of the cell model: The state equation in the mean-field approximation. J. Mol. Liq. 215, 58 (2016).

https://doi.org/10.1016/j.molliq.2015.12.018

M.P. Kozlovskii, O.A. Dobush, I.V. Pylyuk. Using a cell fluid model for the description of a phase transition in simple liquid alkali metals. Ukr. J. Phys. 62, 865 (2017).

https://doi.org/10.15407/ujpe62.10.0865

I.V. Pylyuk, O.A. Dobush. Equation of state of a cell fluid model with allowance for Gaussian fluctuations of the order parameter. Ukr. J. Phys. 65, 1080 (2020).

https://doi.org/10.15407/ujpe65.12.1080

I.R. Yukhnovskii. Phase Transitions of the Second Order. Collective Variables Method (World Scientific, 1987).

https://doi.org/10.1142/0289

J.K. Singh, J. Adhikari, S.K. Kwak. Vapor-liquid phase coexistence curves for Morse fluids. Fluid Phase Equilib. 248, 1 (2006).

https://doi.org/10.1016/j.fluid.2006.07.010

E.M. Apfelbaum. The calculation of vapor-liquid coexistence curve of Morse fluid: Application to iron. J. Chem. Phys. 134, 194506 (2011).

https://doi.org/10.1063/1.3590201

Y. Zhou, M. Karplus, K.D. Ball, R.S. Berry. The distance fluctuation criterion for melting: Comparison of squarewell and Morse potential models for clusters and homopolymers. J. Chem. Phys. 116, 2323 (2002).

https://doi.org/10.1063/1.1426419

X. Xu, C. Cheng, I.H. Chowdhury. Molecular dynamics study of phase change mechanisms during femtosecond laser ablation. J. Heat Transfer 126, 727 (2004).

https://doi.org/10.1115/1.1797011

I. Last, Y. Levy, J. Jortner. Beyond the Rayleigh instability limit for multicharged finite systems: From fission to Coulomb explosion. Proc. Natl. Acad, Sci. USA 99, 9107 (2002).

https://doi.org/10.1073/pnas.142253999

J.P.K. Doye, D.J. Wales. The structure and stability of atomic liquids: From clusters to bulk. Science 271, 484 (1996).

https://doi.org/10.1126/science.271.5248.484

J.P.K. Doye, R.H. Leary, M. Locatelli, F. Schoen. Global optimization of Morse clusters by potential energy transformations. INFORMS J. Comput. 16, 371 (2004).

https://doi.org/10.1287/ijoc.1040.0084

A. Tekin, M. Yurtsever. Molecular dynamics simulation of phase transitions in binary LJ clusters. Turk. J. Chem. 26, 627 (2002).

C.-I. Chou, C.-L. Ho, B. Hu, H. Lee. Morse-type Frenkel-Kontorova model. Phys. Rev. E 57, 2747 (1998).

https://doi.org/10.1103/PhysRevE.57.2747

A. Strachan, T. Cagin, W.A. Goddard, III. Phase diagram of MgO from density-functional theory and moleculardynamics simulations. Phys. Rev. B 60, 15084 (1999).

https://doi.org/10.1103/PhysRevB.60.15084

T.-C. Lim. Approximate relationships between the Generalized Morse and the Extended-Rydberg potential energy functions. Acta Chim. Slov. 52, 149 (2005).

A. Del Sol Mesa, C. Quesne, Yu.F. Smirnov. Generalized Morse potential: Symmetry and satellite potentials. J. Phys. A 31, 321 (1998).

https://doi.org/10.1088/0305-4470/31/1/028

P.M. Morse, E.C.G. Stueckelberg. Diatomic molecules according to the wave mechanics I: Electronic levels of the hydrogen molecular ion. Phys. Rev. 33, 932 (1929).

https://doi.org/10.1103/PhysRev.33.932

A.S. Leal, C. Gouvea dos Santos, C.M. Quintella, H.H.R. Schor. A theoretical model for the scattering of I2 molecule from a perfluoropolyeter liquid surface. J. Braz. Chem. Soc. 10, 359 (1999).

https://doi.org/10.1590/S0103-50531999000500004

V. Constantoudis, C.A. Nicolaides. Stabilization and relative phase effects in a dichromatically driven diatomic Morse molecule: Interpretation based on nonlinear classical dynamics. J. Chem. Phys. 122, 084118 (2005).

https://doi.org/10.1063/1.1854631

A.I. Milchev, A.A. Milchev. Wetting behavior of nanodroplets: The limits of Young's rule validity. Europhys. Lett. 56, 695 (2001).

https://doi.org/10.1209/epl/i2001-00576-1

D. Osorio-Gonzalez, M. Mayorga, J. Orozco, L. RomeroSalazar. Entropy and thermalization of particles in liquids. J. Chem. Phys. 118, 6989 (2003).

https://doi.org/10.1063/1.1560933

P. Shah, C. Chakravarty. Instantaneous normal mode analysis of Morse liquids. J. Chem. Phys. 116, 10825 (2002).

https://doi.org/10.1063/1.1479714

H. Okumura, F. Yonezawa. Liquid-vapor coexistence curves of several interatomic model potentials. J. Chem. Phys. 113, 9162 (2000).

https://doi.org/10.1063/1.1320828

T.-C. Lim. The relationship between Lennard-Jones (12-6) and Morse potential functions. Z. Naturforsch. 58a, 615 (2003).

https://doi.org/10.1515/zna-2003-1104

Опубліковано

2022-02-11

Як цитувати

Pylyuk, I., & Kozlovskii, M. (2022). Фазовий перехід першого роду в рамках коміркової моделі плину: області зміни хімічного потенціалу та відповідні густини. Український фізичний журнал, 67(1), 54. https://doi.org/10.15407/ujpe67.1.54

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика