Thermodynamic Quantities of Morse Fluids in the Supercritical Region

Authors

  • I.V. Pylyuk Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • M.P. Kozlovskii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • O.A. Dobush Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.6.383

Keywords:

Morse interaction potential, critical point, thermodynamic potential, isothermal compressibility, density fluctuations, thermal expansion

Abstract

The critical point parameters for liquid alkali metals (sodium and potassium) are calculated accounting for the non-Gaussian order parameter fluctuations and the Morse interaction potential. The behavior of the isothermal compressibility, density fluctuations, and thermal expansion for sodium is studied in the supercritical temperature region. A significant increase in the isothermal compressibility and the density fluctuations near the critical point indicates a substantial density sensitivity to tiny pressure fluctuations. The thermal expansion coefficient for various fixed pressure values shows a typical gas decrease with increasing supercritical temperature. The Widom line separating the gaseous and liquid structures of the fluid at temperatures above the critical one is represented. Note that our calculations are valid in a small neighborhood of the critical point, which is problematic for theoretical and experimental studies.

References

C.-L. Lee, G. Stell, J.S. Høye. A simple SCOZA for simple fluids. J. Mol. Liq. 112, 13 (2004).

https://doi.org/10.1016/j.molliq.2003.11.004

C.E. Bertrand, J.F. Nicoll, M.A. Anisimov. Comparison of complete scaling and a field-theoretic treatment of asymmetric fluid criticality. Phys. Rev. E 85, 031131 (2012).

https://doi.org/10.1103/PhysRevE.85.031131

A. Parola, L. Reatto. Recent developments of the hierarchical reference theory of fluids and its relation to the renormalization group. Mol. Phys. 110, 2859 (2012).

https://doi.org/10.1080/00268976.2012.666573

A.V. Chalyi, L.A. Bulavin, V.F. Chekhun, K.A. Chalyy, L.M. Chernenko, A.M. Vasilev, E.V. Zaitseva, G.V. Khrapijchyk, A.V. Siverin, M.V. Kovalenko. Universality classes and critical phenomena in confined liquid systems. Condens. Matter Phys. 16, 23008 (2013).

https://doi.org/10.5488/CMP.16.23008

I.R. Yukhnovskii. The phase transition of the first order in the critical region of the gas-liquid system. Condens. Matter Phys. 17, 43001 (2014).

https://doi.org/10.5488/CMP.17.43001

T.J. Yoon, Y.-W. Lee. Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. J. Supercrit. Fluids 134, 21 (2018).

https://doi.org/10.1016/j.supflu.2017.11.022

L.F. Vega. Perspectives on molecular modeling of supercritical fluids: From equations of state to molecular simulations. Recent advances, remaining challenges and opportunities. J. Supercrit. Fluids 134, 41 (2018).

https://doi.org/10.1016/j.supflu.2017.12.025

A. Oleinikova, L. Bulavin, V. Pipich. Critical anomaly of shear viscosity in a mixture with an ionic impurity. Chem. Phys. Lett. 278, 121 (1997).

https://doi.org/10.1016/S0009-2614(97)00945-7

S. Pittois, B. Van Roie, C. Glorieux, J. Thoen. Thermal conductivity, thermal effusivity, and specific heat capacity near the lower critical point of the binary liquid mixture n-butoxyethanol-water. J. Chem. Phys. 121, 1866 (2004).

https://doi.org/10.1063/1.1765652

R. Marr, T. Gamse. Use of supercritical fluids for different processes including new developments-a review. Chem. Eng. Process. 39, 19 (2000).

https://doi.org/10.1016/S0255-2701(99)00070-7

S. Artemenko, P. Krijgsman, V. Mazur. The Widom line for supercritical fluids. J. Mol. Liq. 238, 122 (2017).

https://doi.org/10.1016/j.molliq.2017.03.107

Y.X. Pang, M. Yew, Y. Yan et al. Application of supercritical fluid in the synthesis of graphene materials: A review. J. Nanopart. Res. 23, 204 (2021).

https://doi.org/10.1007/s11051-021-05254-w

A.R.H. Goodwin, J.V. Sengers, C.J. Peters. Applied Thermodynamics of Fluids (Royal Society of Chemistry, 2010) [ISBN: 978-1-84755-806-0].

https://doi.org/10.1039/9781849730983

M.A. Anisimov. Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, 1991) [ISBN: 9782881248061].

D.Yu. Zalepugin, N.A. Tilkunova, I.V. Chernyshova, V.S. Polyakov. Development of technologies based on supercritical fluids. Supercritical Fluids: Theory and Practice 1, 27 (2006) [in Russian].

M. Kozlovskii, O. Dobush. Representation of the grand partition function of the cell model: The state equation in the mean-field approximation. J. Mol. Liq. 215, 58 (2016).

https://doi.org/10.1016/j.molliq.2015.12.018

M.P. Kozlovskii, I.V. Pylyuk, O.A. Dobush. The equation of state of a cell fluid model in the supercritical region. Condens. Matter Phys. 21, 43502 (2018).

https://doi.org/10.5488/CMP.21.43502

I.V. Pylyuk. Fluid critical behavior at liquid-gas phase transition: Analytic method for microscopic description. J. Mol. Liq. 310, 112933 (2020).

https://doi.org/10.1016/j.molliq.2020.112933

A.L. Rebenko. Cell gas model of classical statistical systems. Rev. Math. Phys. 25, 1330006 (2013).

https://doi.org/10.1142/S0129055X13300069

V.A. Boluh, A.L. Rebenko. Cell gas free energy as an approximation of the continuous model. J. Mod. Phys. 6, 168 (2015).

https://doi.org/10.4236/jmp.2015.62022

I.V. Pylyuk, O.A. Dobush. Equation of state of a cell fluid model with allowance for Gaussian fluctuations of the order parameter. Ukr. J. Phys. 65, 1080 (2020).

https://doi.org/10.15407/ujpe65.12.1080

I.V. Pylyuk, M.P. Kozlovskii. First-order phase transition in the framework of the cell fluid model: Regions of chemical potential variation and the corresponding densities. Ukr. J. Phys. 67, 54 (2022).

https://doi.org/10.15407/ujpe67.1.54

I.R. Yukhnovskii. Phase Transitions of the Second Order. Collective Variables Method (World Scientific, 1987) [ISBN-10: 9971500876, ISBN-13: 9789971500870].

https://doi.org/10.1142/0289

I.R. Yukhnovskii, M.P. Kozlovskii, I.V. Pylyuk. Microscopic Theory of Phase Transitions in the Three-Dimensional Systems (Eurosvit, 2001) [in Ukrainian] [ISBN: 966-7343-26-X].

J.K. Singh, J. Adhikari, S.K. Kwak. Vapor-liquid phase coexistence curves for Morse fluids. Fluid Phase Equilib. 248, 1 (2006).

https://doi.org/10.1016/j.fluid.2006.07.010

M.P. Kozlovskii, O.A. Dobush, I.V. Pylyuk. Using a cell fluid model for the description of a phase transition in simple liquid alkali metals. Ukr. J. Phys. 62, 865 (2017).

https://doi.org/10.15407/ujpe62.10.0865

F. Hensel. Critical behaviour of metallic liquids. J. Phys.: Condens. Matter 2, SA33 (1990).

https://doi.org/10.1088/0953-8984/2/S/004

C.A. Eckert, B.L. Knutson, P.G. Debenedetti. Supercritical fluids as solvents for chemical and materials processing. Nature 383, 313 (1996).

https://doi.org/10.1038/383313a0

Downloads

Published

2023-08-23

How to Cite

Pylyuk, I., Kozlovskii, M., & Dobush, O. (2023). Thermodynamic Quantities of Morse Fluids in the Supercritical Region. Ukrainian Journal of Physics, 68(6), 383. https://doi.org/10.15407/ujpe68.6.383

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics