Autooscillatory Dynamics in a Mathematical Model of the Metabolic Process in Aerobic Bacteria. Influence of the Krebs Cycle on the Self-Organization of a Biosystem

Authors

  • V. I. Grytsay Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A. G. Medentsev G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the RAS
  • A. Yu. Arinbasarova G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the RAS

DOI:

https://doi.org/10.15407/ujpe65.5.393

Keywords:

mathematical model, metabolic process, self-organization, deterministic chaos, strange attractor, bifurcation

Abstract

We have modeled the metabolic process running in aerobic cells as open nonlinear dissipative systems. The map of metabolic paths and the general scheme of a dissipative system participating in the transformation of steroids are constructed. We have studied the influence of the Krebs cycle on the dynamics of the whole metabolic process and constructed projections of the phase portrait in the strange attractor mode. The total spectra of Lyapunov exponents, divergences, Lyapunov’s dimensions of the fractality, Kolmogorov–Sinai entropies, and predictability horizons for the given modes are calculated. We have determined the bifurcation diagram presenting the dependence of the dynamics on a small parameter, which defines system’s physical state.

References

V.P. Gachok, V.I. Grytsay. The kinetic model of a macroporous granule with the regulation of biochemical proceses. Dokl. AN SSSR 282, No. 1, 51 (1985).

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, V.K. Akimenko. Kinetic model of hydrocortizone 1-en dehydrogenation by Arthrobacter globiformis. Biotechn. Bioengin. 33, 661 (1989). https://doi.org/10.1002/bit.260330602

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, V.K. Akimenko. Kinetic model for the regulation of redox reactions in steroid transformation by Arthrobacter globiformis cells. Biotechn. Bioengin. 33, 668 (1989). https://doi.org/10.1002/bit.260330603

A.G. Dorofeev, M.V. Glagolev, T.F. Bondarenko, N.S. Panikov. Unusual growth kinetics of Arthrobacter globiformis and its explanation. Mikrobiol. 61, 33 (1992).

A.S. Skichko. Modeling and Optimization of the Process of Cultivation of Bacteria in Bioreactors. Dissertation on the Candidate degree (Chem. Sci.) (D.I. Mendeleev Russian Chem. Techn. Univ., Moscow, 2002) (in Russian).

V.I. Grytsay. The self-organization in a macroporous structure of a gel with immobilized cells. The kinetic model of a bioselective membrane of a biosensor. Dopov. NAN Ukr., No. 2, 175 (2000).

V.I. Grytsay. The self-organization in a reaction-diffusion porous medium. Dopov. NAN Ukr. No. 3, 201 (2000).

V.I. Grytsay. Ordered structures in the mathematical model of a biosensor. Dopov. NAN Ukr. No. 11, 112 (2000).

V.I. Grytsay. The self-organization of the biochemical process of immobilized cells of a bioselective membrane of a biosensor. Ukr. Fiz. Zh. 46, No. 1, 124 (2001).

V.I. Grytsay. Ordered and chaotic structures in the reaction-diffusion medium. Visn. Kyiv. Univ. No. 2, 394 (2002).

V.I. Grytsay. Conditions of self-organization of the prostacyclin-thromboxane system. Visn. Kyiv. Univ. No. 3, 372 (2002).

V.I. Grytsay. Modes of self-irganization in the prostacyclinthromboxane system. Visn. Kyiv. Univ. No. 4, 365 (2002).

V.I. Grytsay. Modeling of the processes in the polyenzymatic prostacyclin-thromboxane system. Visn. Kyiv. Univ. No. 4, 379 (2003).

V.V. Andreev, V.I. Grytsay. Modeling of the nonactive zones in porous granules of a catalyst and in a biosensor. Matem. Model. 17, No. 2, 57 (2005).

V.V. Andreev, V.I. Grytsay. Influence of the inhomogeneity of running of a diffusion-reaction process on the formation of structures in the porous medium. Matem. Model. 17, No. 6, 3 (2005).

V.I. Grytsay, V.V. Andreev. The role of diffusion in the formation of nonactive zones in porous reaction-diffusion media. Matem. Model. 18, No. 12, 88 (2006).

V. Grytsay. Unsteady conditions in porous reaction-diffusion medium. Romanian J. Biophys. 17, No. 1, 55 (2007).

V.I. Grytsay. Uncertainty of the evolution of structures in the reaction-diffusion medium of a bioreactor. Biofiz. Visn. Iss. 2 (19), 92 (2007).

V.I. Grytsay. Formation and stabilityof the morphogenetic field of immobilized cells of a bioreactor. Biofiz. Visn. Iss. 1 (20), 48 (2008).

V.I. Grytsay. Prediction structural instability and type attractor of biochemical process. Biofiz. Visn. Iss. 23 (2), 77 (2009).

V.I. Grytsay. Structural instability of a biochemical process. Ukr. J. Phys. 55 (5), 599 (2010).

V.I. Grytsay, I.V. Musatenko. The structure of a chaos of strange attractors within a mathematical model of the metabolism of a cell. Ukr. J. Phys. 58, No. 7, 677 (2013). https://doi.org/10.15407/ujpe58.07.0677

V.I. Grytsay, I.V. Musatenko. Self-oscillatory dynamics of the metabolic process in a cell. Ukr. Biokhim. Zh. 85, No. 2, 93 (2013). https://doi.org/10.15407/ubj85.02.093

V.I. Grytsay, I.V. Musatenko. A mathematical model of the metabolism of a cell. CMSIM 2, No. 4, 539 (2013).

V.I. Grytsay, I.V. Musatenko. Self-organization and fractality in a metabolic process of the Krebs cycle. Ukr. Biokhim. Zh. 85, No. 5, 191 (2013). https://doi.org/10.15407/ubj85.05.191

V.I. Grytsay, I.V. Musatenko. Self-organization and chaos in the metabolism of a cell. Biopolym. Cells. 30, No. 5, 404 (2014). https://doi.org/10.7124/bc.0008B9

V. Grytsay, I. Musatenko. Nonlinear self-organization dynamics of a metabolic process of the Krebs cycle. CMSIM 3, 207 (2014).

V. Grytsay. Lyapunov indices and the Poincar'e mapping in a study of the stability of the Krebs cycle. Ukr. J. Phys. 60, No. 6, 564 (2015). https://doi.org/10.15407/ujpe60.06.0561

V.I. Grytsay. Self-organization and fractality in the metabolic process of glycolysis. Ukr. J. Phys. 60, No. 12, 1253 (2015). https://doi.org/10.15407/ujpe60.12.1251

V. Grytsay. Self-organization and fractality created by gluconeogenesis in the metabolic process. CMSIM 5, 113 (2016).

V.I. Grytsay. Self-organization and chaos in the metabolism of hemostasis in a blood vessel. Ukr. J. Phys. 61, No. 7, 648 (2016). https://doi.org/10.15407/ujpe61.07.0648

V.I. Grytsay. A mathematical model of the metabolic process of atherosclerosis. Ukr. Biochem. J. 88, No. 4, 75 (2016). https://doi.org/10.15407/ubj88.04.075

V.I. Grytsay. Spectral analysis and invariant measure in the study of a nonlinear dynamics of the metabolic process in cells. Ukr. J. Phys. 62, No. 5, 448 (2017). https://doi.org/10.15407/ujpe62.05.0448

S.P. Kuznetsov. Dynamical Chaos (Fizmatlit, 2001) (in Russian).

V.P. Gachok. Strange Attractors in Biosystems (Naukova Dumka, 1989) (in Russian).

S.D. Varfolomeev, V.P. Gachok, A.T. Mevkh. Kinetic behavior of the multienzyme system of blood prostanoid synthesis. BioSystems. 19, 45 (1986). https://doi.org/10.1016/0303-2647(86)90033-X

Yu.M. Romanovskii, N.V. Stepanova, D.S. Chernavskii. Mathematical Biophysics (Nauka, 1984) (in Russian).

E.E. Selkov. Self-oscillations in glycolysis. Europ. J. Biochem. 4, 79 (1968). https://doi.org/10.1111/j.1432-1033.1968.tb00175.x

G.Yu. Riznichenko. Mathematical Models in Biophysics and Ecology (Inst. of Computer. Studies, 2003) (in Russian).

O.P. Matyshevska, A.Yu. Karlash, Ya.V. Shtogum, A. Benilov, Yu. Kirgizov, K.O. Gorchinskyy, E.V. Buzaneva, Yu.I. Prylutskyy, P. Scharff. Self-organizing DNA/carbon nanotube molecular films. Mater. Sci. Engineer. C 15, Nos. 1-2, 249 (2001). https://doi.org/10.1016/S0928-4931(01)00309-5

Downloads

Published

2020-05-11

How to Cite

Grytsay, V. I., Medentsev, A. G., & Arinbasarova, A. Y. (2020). Autooscillatory Dynamics in a Mathematical Model of the Metabolic Process in Aerobic Bacteria. Influence of the Krebs Cycle on the Self-Organization of a Biosystem. Ukrainian Journal of Physics, 65(5), 393. https://doi.org/10.15407/ujpe65.5.393

Issue

Section

General physics