Self-Organization and Fractality in the Metabolic Process of Glycolysis

  • V. I. Grytsay Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: glycolysis, metabolic process, self-organization, fractality, strange attractor, Feigenbaum scenario

Abstract

Within a mathematical model, the metabolic process of glycolysis is studied. The general scheme of glycolysis is considered as a natural result of the biochemical evolution. By using the theory of dissipative structures, the conditions of self-organization of the given process are sought. The autocatalytic processes resulting in the conservation of cyclicity in the dynamics of the process are determined. The conditions of breaking of the synchronization of the process, increase in the multiplicity of a cyclicity, and appearance of chaotic modes are studied. The phase-parametric diagrams of a cascade of bifurcations, which characterize the transition to chaotic modes according to the Feigenbaum scenario and the intermittence, are constructed. The strange attractors formed as a result of the funnel effect are found. The complete spectra of Lyapunov indices and divergences for the obtained modes are calculated. The values of KS-entropy, horizons of predictability, and Lyapunov dimensions of strange attractors are determined. Some conclusions concerning the structural-functional connections in glycolysis and their influence on the stability of the metabolic process in a cell are presented.

References

A.P. Rudenko, DAN SSSR 159, 1374 (1964).

A.P. Rudenko, The Theory of Self-Development of Open Catalytic Systems (Moscow State Univ., Moscow, 1969) (in Russian).

A.P. Rudenko, Zh. Fiz. Khim. 57, 1597, 2641 (1983); 61, 1457 (1987).

G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977).

B. Hess and A. Boiteux, Annu. Rev. Biochem. 40, 237 (1971). https://doi.org/10.1146/annurev.bi.40.070171.001321

J. Higgins, Proc. Nat. Acad. Sci. USA, 51, 989 (1964). https://doi.org/10.1073/pnas.51.6.989

E.E. Selkov, Europ. J. Biochem. 4, 79 (1968). https://doi.org/10.1111/j.1432-1033.1968.tb00175.x

A. Goldbeter and R. Lefever, Biophys J. 12, 1302 (1972). https://doi.org/10.1016/S0006-3495(72)86164-2

L.N. Drozdov-Tikhomirov, G.I. Skurida, and A.A. Alexandrov, J. Biomol. Struct. Dyn. 16, 917 (1999). https://doi.org/10.1080/07391102.1999.10508302

A. Godlbeter and R. Caplan, Annu. Rev. Biophys. Bioeng. 5, 449 (1976). https://doi.org/10.1146/annurev.bb.05.060176.002313

A.D. Suprun, Yu.I. Prylutskyy, A.M. Shut, and M.S. Miroshnichenko, Ukr. J. Phys. 48, 704 (2003).

Yu.I. Prylutskyy, А.М. Shut, M.S. Miroshnychenko, and A.D. Suprun, Int. J. Thermophys. 26, 827 (2005).

A.D. Suprun, A.M. Shut, Yu.I. Prylutskyy, Ukr. J. Phys. 52, 997 (2007).

Chaos in Chemical and Biochemical System, edit. by R. Field, L. Gy¨orgyi (World Scientific, Singapore, 1993).

V.P. Gachok and Ya.M. Yakymiv, Dokl. Akad. Nauk SSSR 300, 1095 (1988).

V.P. Gachok, Kinetics of Biochemical Processes (Naukova Dumka, Kiev, 1988) (in Russian).

V.P. Gachok, Strange Attractors in Biosystems (Naukova Dumka, Kiev, 1989) (in Russian).

V.S. Anishchenko, Complex Oscillations in Simple Systems (Nauka, Moscow, 1990) (in Russian).

S.P. Kuznetsov, Dynamical Chaos (Fiz.-Mat. Nauka, Moscow, 2001) (in Russian).

V.P. Gachok and V.I. Grytsay, Dokl. Akad. Nauk SSSR 282, 51 (1985).

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, and V.K. Akimenko, Biotechn. Bioengin 33, 661 (1989). https://doi.org/10.1002/bit.260330602

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, and V.K. Akimenko, Biotechn. Bioengin 33, 668 (1989). https://doi.org/10.1002/bit.260330603

V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr., No. 2, 175 (2000).

V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr., No. 3, 201 (2000).

V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr., No. 11, 112 (2000).

V.I. Grytsay, Ukr. J. Phys. 46, 124 (2001).

V.V. Andreev and V.I. Grytsay, Matem. Modelir. 17, No. 2, 57 (2005).

V.V. Andreev and V.I. Grytsay, Matem. Modelir. 17, No. 6, 3 (2005).

V.I. Grytsay and V.V. Andreev, Matem. Modelir. 18, No. 12, 88 (2006).

V.I. Grytsay, Medium Romanian J. Biophys. 17, No. 1, 55 (2007).

V.I. Grytsay, Biofiz. Visn., No. 2, 92 (2007).

V.I. Grytsay, Biofiz. Visn., No. 2, 25 (2008).

V.I. Grytsay, Ukr. J. Phys. 55, 599 (2010).

V.I. Grytsay and I.V. Musatenko, Ukr. Biochem. J. 85, No. 2, 93 (2013). https://doi.org/10.15407/ubj85.02.093

V.I. Grytsay and I.V. Musatenko, Ukr. J. Phys. 58, 677 (2013). https://doi.org/10.15407/ujpe58.07.0677

V.I. Grytsay and I.V. Musatenko, Chaotic Modeling and Simulation (CMSIM) No. 4, 539 (2013).

V.I. Grytsay and I.V. Musatenko, Ukr. Biokhim. Zh. 85, No. 5, 191 (2013).

V.I. Grytsay and I.V. Musatenko, Biopol. and Cell 30, 404 (2014). https://doi.org/10.7124/bc.0008B9

V.I. Grytsay and I.V. Musatenko, Chaotic Modeling and Simulation (CMSIM) 3, 207 (2014).

V. Grytsay, Ukr. J. Phys. 60, 564 (2015).

M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978). https://doi.org/10.1007/BF01020332

A.N. Kolmogorov, DAN SSSR 154, 754 (1959).

Ya.B. Pesin, Usp. Mat. Nauk. 32, No. 4, 55 (1977).

J.L. Kaplan and J.A. Yorke, Ann. N. Y. Acad. Sci. 316, 400 (1979). https://doi.org/10.1111/j.1749-6632.1979.tb29484.x

J.L. Kaplan and J.A. Yorke, in: Functional Differential Equations of Fixed Points, eds. H.O. Peitgen, H.O. Walther (Springer, Berlin, 1979), p. 204. https://doi.org/10.1007/BFb0064319

Published
2019-01-10
How to Cite
Grytsay, V. (2019). Self-Organization and Fractality in the Metabolic Process of Glycolysis. Ukrainian Journal of Physics, 60(12), 1251. https://doi.org/10.15407/ujpe60.12.1251
Section
Nonlinear processes