Автоколивна динаміка в математичній моделі метаболічного процесу аеробної бактерії. Вплив циклу Кребса на самоорганізацію біосистеми

Автор(и)

  • V. I. Grytsay Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A. G. Medentsev G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the RAS
  • A. Yu. Arinbasarova G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the RAS

DOI:

https://doi.org/10.15407/ujpe65.5.393

Ключові слова:

mathematical model, metabolic process, self-organization, deterministic chaos, strange attractor, bifurcation

Анотація

Проведено моделювання метаболiчного процесу аеробної клiтини як вiдкритої нелiнiйної дисипативної системи. Побудовано карту ї ї метаболiчних шляхiв i загальну схему дисипативної системи, що приймає участь у трансформацiї стероїдiв. Дослiджено вплив циклу Кребса на динамiку в цiлому метаболiчного процесу, побудовано проекцiї фазового портрету в режимi дивного атрактора. Розраховано повнi спектри показникiв Ляпунова, дивергенцiй, ляпуновськi розмiрностi фрактальностi, ентропiї Колмогорова–Сiная та горизонти передбачення в даних режимах. Побудовано бiфуркацiйну дiаграму залежностi динамiки вiд малого параметра, що впливає на фiзичний стан системи.

Посилання

V.P. Gachok, V.I. Grytsay. The kinetic model of a macroporous granule with the regulation of biochemical proceses. Dokl. AN SSSR 282, No. 1, 51 (1985).

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, V.K. Akimenko. Kinetic model of hydrocortizone 1-en dehydrogenation by Arthrobacter globiformis. Biotechn. Bioengin. 33, 661 (1989). https://doi.org/10.1002/bit.260330602

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, V.K. Akimenko. Kinetic model for the regulation of redox reactions in steroid transformation by Arthrobacter globiformis cells. Biotechn. Bioengin. 33, 668 (1989). https://doi.org/10.1002/bit.260330603

A.G. Dorofeev, M.V. Glagolev, T.F. Bondarenko, N.S. Panikov. Unusual growth kinetics of Arthrobacter globiformis and its explanation. Mikrobiol. 61, 33 (1992).

A.S. Skichko. Modeling and Optimization of the Process of Cultivation of Bacteria in Bioreactors. Dissertation on the Candidate degree (Chem. Sci.) (D.I. Mendeleev Russian Chem. Techn. Univ., Moscow, 2002) (in Russian).

V.I. Grytsay. The self-organization in a macroporous structure of a gel with immobilized cells. The kinetic model of a bioselective membrane of a biosensor. Dopov. NAN Ukr., No. 2, 175 (2000).

V.I. Grytsay. The self-organization in a reaction-diffusion porous medium. Dopov. NAN Ukr. No. 3, 201 (2000).

V.I. Grytsay. Ordered structures in the mathematical model of a biosensor. Dopov. NAN Ukr. No. 11, 112 (2000).

V.I. Grytsay. The self-organization of the biochemical process of immobilized cells of a bioselective membrane of a biosensor. Ukr. Fiz. Zh. 46, No. 1, 124 (2001).

V.I. Grytsay. Ordered and chaotic structures in the reaction-diffusion medium. Visn. Kyiv. Univ. No. 2, 394 (2002).

V.I. Grytsay. Conditions of self-organization of the prostacyclin-thromboxane system. Visn. Kyiv. Univ. No. 3, 372 (2002).

V.I. Grytsay. Modes of self-irganization in the prostacyclinthromboxane system. Visn. Kyiv. Univ. No. 4, 365 (2002).

V.I. Grytsay. Modeling of the processes in the polyenzymatic prostacyclin-thromboxane system. Visn. Kyiv. Univ. No. 4, 379 (2003).

V.V. Andreev, V.I. Grytsay. Modeling of the nonactive zones in porous granules of a catalyst and in a biosensor. Matem. Model. 17, No. 2, 57 (2005).

V.V. Andreev, V.I. Grytsay. Influence of the inhomogeneity of running of a diffusion-reaction process on the formation of structures in the porous medium. Matem. Model. 17, No. 6, 3 (2005).

V.I. Grytsay, V.V. Andreev. The role of diffusion in the formation of nonactive zones in porous reaction-diffusion media. Matem. Model. 18, No. 12, 88 (2006).

V. Grytsay. Unsteady conditions in porous reaction-diffusion medium. Romanian J. Biophys. 17, No. 1, 55 (2007).

V.I. Grytsay. Uncertainty of the evolution of structures in the reaction-diffusion medium of a bioreactor. Biofiz. Visn. Iss. 2 (19), 92 (2007).

V.I. Grytsay. Formation and stabilityof the morphogenetic field of immobilized cells of a bioreactor. Biofiz. Visn. Iss. 1 (20), 48 (2008).

V.I. Grytsay. Prediction structural instability and type attractor of biochemical process. Biofiz. Visn. Iss. 23 (2), 77 (2009).

V.I. Grytsay. Structural instability of a biochemical process. Ukr. J. Phys. 55 (5), 599 (2010).

V.I. Grytsay, I.V. Musatenko. The structure of a chaos of strange attractors within a mathematical model of the metabolism of a cell. Ukr. J. Phys. 58, No. 7, 677 (2013). https://doi.org/10.15407/ujpe58.07.0677

V.I. Grytsay, I.V. Musatenko. Self-oscillatory dynamics of the metabolic process in a cell. Ukr. Biokhim. Zh. 85, No. 2, 93 (2013). https://doi.org/10.15407/ubj85.02.093

V.I. Grytsay, I.V. Musatenko. A mathematical model of the metabolism of a cell. CMSIM 2, No. 4, 539 (2013).

V.I. Grytsay, I.V. Musatenko. Self-organization and fractality in a metabolic process of the Krebs cycle. Ukr. Biokhim. Zh. 85, No. 5, 191 (2013). https://doi.org/10.15407/ubj85.05.191

V.I. Grytsay, I.V. Musatenko. Self-organization and chaos in the metabolism of a cell. Biopolym. Cells. 30, No. 5, 404 (2014). https://doi.org/10.7124/bc.0008B9

V. Grytsay, I. Musatenko. Nonlinear self-organization dynamics of a metabolic process of the Krebs cycle. CMSIM 3, 207 (2014).

V. Grytsay. Lyapunov indices and the Poincar'e mapping in a study of the stability of the Krebs cycle. Ukr. J. Phys. 60, No. 6, 564 (2015). https://doi.org/10.15407/ujpe60.06.0561

V.I. Grytsay. Self-organization and fractality in the metabolic process of glycolysis. Ukr. J. Phys. 60, No. 12, 1253 (2015). https://doi.org/10.15407/ujpe60.12.1251

V. Grytsay. Self-organization and fractality created by gluconeogenesis in the metabolic process. CMSIM 5, 113 (2016).

V.I. Grytsay. Self-organization and chaos in the metabolism of hemostasis in a blood vessel. Ukr. J. Phys. 61, No. 7, 648 (2016). https://doi.org/10.15407/ujpe61.07.0648

V.I. Grytsay. A mathematical model of the metabolic process of atherosclerosis. Ukr. Biochem. J. 88, No. 4, 75 (2016). https://doi.org/10.15407/ubj88.04.075

V.I. Grytsay. Spectral analysis and invariant measure in the study of a nonlinear dynamics of the metabolic process in cells. Ukr. J. Phys. 62, No. 5, 448 (2017). https://doi.org/10.15407/ujpe62.05.0448

S.P. Kuznetsov. Dynamical Chaos (Fizmatlit, 2001) (in Russian).

V.P. Gachok. Strange Attractors in Biosystems (Naukova Dumka, 1989) (in Russian).

S.D. Varfolomeev, V.P. Gachok, A.T. Mevkh. Kinetic behavior of the multienzyme system of blood prostanoid synthesis. BioSystems. 19, 45 (1986). https://doi.org/10.1016/0303-2647(86)90033-X

Yu.M. Romanovskii, N.V. Stepanova, D.S. Chernavskii. Mathematical Biophysics (Nauka, 1984) (in Russian).

E.E. Selkov. Self-oscillations in glycolysis. Europ. J. Biochem. 4, 79 (1968). https://doi.org/10.1111/j.1432-1033.1968.tb00175.x

G.Yu. Riznichenko. Mathematical Models in Biophysics and Ecology (Inst. of Computer. Studies, 2003) (in Russian).

O.P. Matyshevska, A.Yu. Karlash, Ya.V. Shtogum, A. Benilov, Yu. Kirgizov, K.O. Gorchinskyy, E.V. Buzaneva, Yu.I. Prylutskyy, P. Scharff. Self-organizing DNA/carbon nanotube molecular films. Mater. Sci. Engineer. C 15, Nos. 1-2, 249 (2001). https://doi.org/10.1016/S0928-4931(01)00309-5

Downloads

Опубліковано

2020-05-11

Як цитувати

Grytsay, V. I., Medentsev, A. G., & Arinbasarova, A. Y. (2020). Автоколивна динаміка в математичній моделі метаболічного процесу аеробної бактерії. Вплив циклу Кребса на самоорганізацію біосистеми. Український фізичний журнал, 65(5), 393. https://doi.org/10.15407/ujpe65.5.393

Номер

Розділ

Загальна фізика