Influence of a Capping Ligand on the Band Gap and Excitonic Levels in Colloidal Solutions and Films of ZnSe Quantum Dots

Authors

  • N. V. Bondar Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. S. Brodyn Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • O. V. Tverdokhlibova Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • N. A. Matveevskaya Institute for Single Crystals, National Acad. of Sci. of Ukraine
  • T. G. Beynik Institute for Single Crystals, National Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.5.425

Keywords:

quantum dot, exciton, ZnSe, energy transfer, ligands

Abstract

Semiconductor quantum dots are promising nanostructures for their application in solar cells of the 3rd generation, photodetectors, light emitting diodes, and as biological markers. However, the issue concerning the influence of superficial organic stabilizers (ligands) on the energy of excitons in quantum dots still remains open. In this work, by analyzing the optical spectra of colloidal solutions and films of ZnSe quantum dots stabilized with 1-thioglycerol, it is found that the energy of excitons and their migration depend not only on the quantum confinement effect, but also on the superficial contribution from the thiol stabilizer group –
SH. The dependence of the exciton energy in ZnSe quantum dots on the surface stabilizer concentration is experimentally revealed for the first time. The short size of the stabilizer molecular chain and the large initial energy of excitons are shown to result in the effective migration of excitons over an array of quantum dots.

References

R.D. Harris, S.B. Homan, M. Kodaimati, Chen He, A.B. Nepomnyashchii, N.K. Swenson, S. Lian, R. Calzada, E.A. Weiss. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12685 (2016). https://doi.org/10.1021/acs.chemrev.6b00102

N. Kholmicheva, P. Moroz, H. Eckard, G. Jensen, M. Zamkov. Energy transfer in quantum dot solids. ACS Energy Lett. 2, 154 (2017). https://doi.org/10.1021/acsenergylett.6b00569

N. Hildebrandt, C.M. Spillmann, W.R. Algar, T. Pons, M.H. Stewart, E. Oh, K. Susumu, S.A. D??az, J.B. Delehanty, I.L. Medintz. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 117, 536 (2016). https://doi.org/10.1021/acs.chemrev.6b00030

M.T. Frederick, V.A. Amin, L.C. Cass, E.A. Weiss. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 11, 5455 (2011). https://doi.org/10.1021/nl203222m

M.T. Frederick, V.A. Amin, N.K. Swenson, A.Y. Ho, E.A. Weiss. Control of exciton confinement in quantum dot-organic complexes through energetic alignment of interfacial orbitals. Nano Lett. 13, 287 (2013). https://doi.org/10.1021/nl304098e

M.S. Kodaimati, Ch. Wang, C. Chapman, G.C. Schatz, E.A. Weiss. The distance-dependence of inter-particle energy transfer in the near-infrared within electrostatic assemblies of PbS quantum dots. ACS Nano 11, 5041 (2017). https://doi.org/10.1021/acsnano.7b01778

M. Sykora, A.Y. Koposov, J.A. McGuire, R.K. Schulze, O. Tretiak, J.M. Pietryga, V.I. Klimov. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 4, 2021 (2012). https://doi.org/10.1021/nn100131w

S. Kundu, A. Patra. Nanoscale strategies for light harvesting. Chem. Rev. 117, 712 (2017). https://doi.org/10.1021/acs.chemrev.6b00036

C.S. Ponseca Jr., P. Chabera, J. Uhlig, P. Persson, V. Sundstr?om. Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 117, 10940 (2017). https://doi.org/10.1021/acs.chemrev.6b00807

R.D. Harris, V.A. Amin, B. Lau, E.A. Weiss. Role of interligand coupling in determining the interfacial electronic structure of colloidal CdS quantum dots. ACS Nano 10, 1395 (2016). https://doi.org/10.1021/acsnano.5b06837

A.Ch.A. Silva, S.W. da Silva, P.C. Morais, N.O. Dantas. Shell thickness modulation in ultrasmall CdSe/CdSxSe1?x/CdS core/shell quantum dots via 1-thioglycerol. ACS Nano 8, 1913 (2014). https://doi.org/10.1021/nn406478f

Y.Q. Zhang, X.A. Cao. Optical characterization of CdSe quantum dots with metal chalcogenide ligands in solutions and solids. Appl. Phys. Lett. 99, 023106 (2011). https://doi.org/10.1063/1.3610456

S.K. Sarkar, G. Hodes. Charge overlap interaction in quantum dot films: Time dependence and suppression by cyanide adsorption. J. Phys. Chem. B. 109, 7214 (2005). https://doi.org/10.1021/jp044465d

Y. Nosaka, K. Yamaguchi, H. Miyama, H. Hayashi. Reversible adsorption-enhanced quantum confinement in semiconductor quantum dots. Appl. Phys. Lett. 81, 5045 (2002). https://doi.org/10.1063/1.1532109

D.I. Kim, M.A. Islam, L. Avila, I.P. Herman. Contribution of the loss of nanocrystal ligands to interdot coupling in films of small CdSe/1-thioglycerol nanocrystals. J. Phys. Chem. B 107, 6318 (2003). https://doi.org/10.1021/jp030168h

N.V. Bondar, M.S. Brodin, N.A. Matveevskaya. Influence of surface and polarization effects on electronic excitation energy transfer in colloidal solutions and films of ZnSe quantum dots. Low Temp. Phys. 44, 1532 (2018). https://doi.org/10.1063/1.5062158

B. Goswami, S. Pal, P. Sarkar. Theoretical studies of the effect of surface passivation on structural, electronic, and optical properties of zinc selenide clusters Phys. Rev. B 76, 045323 (2007). https://doi.org/10.1103/PhysRevB.76.045323

Y. Nosaka. Finite depth spherical well model for excited states of ultrasmall semiconductor particles. An applicat-lon. J. Phys. Chem. 95, 5054 (1991). https://doi.org/10.1021/j100166a028

G.B. Grigoryan, A.V. Rodina, A.L. Efros. Confined excitons and biexcitons in semiconductor microcrystals embedded in an insulating glass matrix. Fiz. Tverd. Tela 32, 3512 (1990).

P. Schapotschnikow, B. Hommersom, T.J.H. Vlugt. Adsorption and binding of ligands to CdSe nanocrystals. J. Phys. Chem. C. 113, 12690 (2009). https://doi.org/10.1021/jp903291d

Boon-Kin Pong, B.L. Trout, Jim-Yang Lee. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: A procedure guided by computational studies. Langmuir 24, 5270 (2008). https://doi.org/10.1021/la703431j

S. Baskoutas, A.F. Terzis. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708 (2006). https://doi.org/10.1063/1.2158502

J. Eilers, J. van Hest, A. Meijerink, C. de Mello Donega. Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots. J. Phys. Chem. C. 118, 23313 (2014). https://doi.org/10.1021/jp5038238

V.A. Amin, K.O. Aruda, B. Lau, A.M. Rasmussen, K. Edme, E.A.Weiss. Dependence of the band gap of CdSe quantum dots on the surface coverage and binding mode of an exciton-delocalizing ligand, methylthiophenolate. J. Phys. Chem. C. 119, 19423 (2005). https://doi.org/10.1021/acs.jpcc.5b04306

N.V. Bondar, M.S. Brodin, A.M. Brodin, N.A. Matveevskaya. Photoluminescence and confinement of excitons in disordered porous films. Semiconductors 50, 346 (2016). https://doi.org/10.1134/S1063782616030039

N.V. Bondar, M.S. Brodin. Free and bound states of excitons in a percolation cluster of ZnSe quantum dots in a dielectric matrix. Low Temp. Phys. 37, 1026 (2011). https://doi.org/10.1063/1.3674196

N.V. Bondar, M.S. Brodyn, N.A. Matveevskaya, T.G. Beynik. Electronic excitation energy transfer in an array of CdS quantum dots on a quasi-two-dimensional surface. Semiconductors 53, 188 (2019). https://doi.org/10.1134/S1063782619020040

Published

2019-06-18

How to Cite

Bondar, N. V., Brodyn, M. S., Tverdokhlibova, O. V., Matveevskaya, N. A., & Beynik, T. G. (2019). Influence of a Capping Ligand on the Band Gap and Excitonic Levels in Colloidal Solutions and Films of ZnSe Quantum Dots. Ukrainian Journal of Physics, 64(5), 425. https://doi.org/10.15407/ujpe64.5.425

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)