Вплив покриваючого ліганду на величину щілини та енергетичні рівні екситонів колоїдних розчинів та плівок квантових точок ZnSe

Автор(и)

  • N. V. Bondar Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. S. Brodyn Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • O. V. Tverdokhlibova Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • N. A. Matveevskaya Institute for Single Crystals, National Acad. of Sci. of Ukraine
  • T. G. Beynik Institute for Single Crystals, National Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.5.425

Ключові слова:

квантова точка, екситон, ZnSe, перенос енергії, ліганди

Анотація

Квантовi точки напiвпровiдникiв є перспективними наноструктурами для їх використання в сонячних комiрках 3-го поколiння, фотодетекторах, свiтловипромiнюючих дiодах та як бiологiчнi маркери. Однак залишається вiдкритим питання впливу поверхневих органiчних стабiлiзаторiв (лiгандiв) на енергiю екситонiв квантових точок. На основi аналiзу оптичних спектрiв колоїдних розчинiв та плiвок
квантових точок ZnSe, стабiлiзованих 1-тiоглiцеролом, ми встановили, що енергiя екситонiв та їх мiграцiя залежать не тiльки вiд квантово-розмiрного ефекту, а й поверхневого внеску за рахунок тiольної –SH групи стабiлiзатора. Вперше показана експериментальна залежнiсть енергiї екситонiв у квантових точках ZnSe вiд концентрацiї поверхневого стабiлiзатора. Також показано, що короткий розмiр молекулярного ланцюжка стабiлiзатора та велика початкова енергiя екситонiв, зумовлюють їх ефективну мiграцiю у масивi квантових точок.

Посилання

R.D. Harris, S.B. Homan, M. Kodaimati, Chen He, A.B. Nepomnyashchii, N.K. Swenson, S. Lian, R. Calzada, E.A. Weiss. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12685 (2016). https://doi.org/10.1021/acs.chemrev.6b00102

N. Kholmicheva, P. Moroz, H. Eckard, G. Jensen, M. Zamkov. Energy transfer in quantum dot solids. ACS Energy Lett. 2, 154 (2017). https://doi.org/10.1021/acsenergylett.6b00569

N. Hildebrandt, C.M. Spillmann, W.R. Algar, T. Pons, M.H. Stewart, E. Oh, K. Susumu, S.A. D??az, J.B. Delehanty, I.L. Medintz. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 117, 536 (2016). https://doi.org/10.1021/acs.chemrev.6b00030

M.T. Frederick, V.A. Amin, L.C. Cass, E.A. Weiss. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 11, 5455 (2011). https://doi.org/10.1021/nl203222m

M.T. Frederick, V.A. Amin, N.K. Swenson, A.Y. Ho, E.A. Weiss. Control of exciton confinement in quantum dot-organic complexes through energetic alignment of interfacial orbitals. Nano Lett. 13, 287 (2013). https://doi.org/10.1021/nl304098e

M.S. Kodaimati, Ch. Wang, C. Chapman, G.C. Schatz, E.A. Weiss. The distance-dependence of inter-particle energy transfer in the near-infrared within electrostatic assemblies of PbS quantum dots. ACS Nano 11, 5041 (2017). https://doi.org/10.1021/acsnano.7b01778

M. Sykora, A.Y. Koposov, J.A. McGuire, R.K. Schulze, O. Tretiak, J.M. Pietryga, V.I. Klimov. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 4, 2021 (2012). https://doi.org/10.1021/nn100131w

S. Kundu, A. Patra. Nanoscale strategies for light harvesting. Chem. Rev. 117, 712 (2017). https://doi.org/10.1021/acs.chemrev.6b00036

C.S. Ponseca Jr., P. Chabera, J. Uhlig, P. Persson, V. Sundstr?om. Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 117, 10940 (2017). https://doi.org/10.1021/acs.chemrev.6b00807

R.D. Harris, V.A. Amin, B. Lau, E.A. Weiss. Role of interligand coupling in determining the interfacial electronic structure of colloidal CdS quantum dots. ACS Nano 10, 1395 (2016). https://doi.org/10.1021/acsnano.5b06837

A.Ch.A. Silva, S.W. da Silva, P.C. Morais, N.O. Dantas. Shell thickness modulation in ultrasmall CdSe/CdSxSe1?x/CdS core/shell quantum dots via 1-thioglycerol. ACS Nano 8, 1913 (2014). https://doi.org/10.1021/nn406478f

Y.Q. Zhang, X.A. Cao. Optical characterization of CdSe quantum dots with metal chalcogenide ligands in solutions and solids. Appl. Phys. Lett. 99, 023106 (2011). https://doi.org/10.1063/1.3610456

S.K. Sarkar, G. Hodes. Charge overlap interaction in quantum dot films: Time dependence and suppression by cyanide adsorption. J. Phys. Chem. B. 109, 7214 (2005). https://doi.org/10.1021/jp044465d

Y. Nosaka, K. Yamaguchi, H. Miyama, H. Hayashi. Reversible adsorption-enhanced quantum confinement in semiconductor quantum dots. Appl. Phys. Lett. 81, 5045 (2002). https://doi.org/10.1063/1.1532109

D.I. Kim, M.A. Islam, L. Avila, I.P. Herman. Contribution of the loss of nanocrystal ligands to interdot coupling in films of small CdSe/1-thioglycerol nanocrystals. J. Phys. Chem. B 107, 6318 (2003). https://doi.org/10.1021/jp030168h

N.V. Bondar, M.S. Brodin, N.A. Matveevskaya. Influence of surface and polarization effects on electronic excitation energy transfer in colloidal solutions and films of ZnSe quantum dots. Low Temp. Phys. 44, 1532 (2018). https://doi.org/10.1063/1.5062158

B. Goswami, S. Pal, P. Sarkar. Theoretical studies of the effect of surface passivation on structural, electronic, and optical properties of zinc selenide clusters Phys. Rev. B 76, 045323 (2007). https://doi.org/10.1103/PhysRevB.76.045323

Y. Nosaka. Finite depth spherical well model for excited states of ultrasmall semiconductor particles. An applicat-lon. J. Phys. Chem. 95, 5054 (1991). https://doi.org/10.1021/j100166a028

G.B. Grigoryan, A.V. Rodina, A.L. Efros. Confined excitons and biexcitons in semiconductor microcrystals embedded in an insulating glass matrix. Fiz. Tverd. Tela 32, 3512 (1990).

P. Schapotschnikow, B. Hommersom, T.J.H. Vlugt. Adsorption and binding of ligands to CdSe nanocrystals. J. Phys. Chem. C. 113, 12690 (2009). https://doi.org/10.1021/jp903291d

Boon-Kin Pong, B.L. Trout, Jim-Yang Lee. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: A procedure guided by computational studies. Langmuir 24, 5270 (2008). https://doi.org/10.1021/la703431j

S. Baskoutas, A.F. Terzis. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708 (2006). https://doi.org/10.1063/1.2158502

J. Eilers, J. van Hest, A. Meijerink, C. de Mello Donega. Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots. J. Phys. Chem. C. 118, 23313 (2014). https://doi.org/10.1021/jp5038238

V.A. Amin, K.O. Aruda, B. Lau, A.M. Rasmussen, K. Edme, E.A.Weiss. Dependence of the band gap of CdSe quantum dots on the surface coverage and binding mode of an exciton-delocalizing ligand, methylthiophenolate. J. Phys. Chem. C. 119, 19423 (2005). https://doi.org/10.1021/acs.jpcc.5b04306

N.V. Bondar, M.S. Brodin, A.M. Brodin, N.A. Matveevskaya. Photoluminescence and confinement of excitons in disordered porous films. Semiconductors 50, 346 (2016). https://doi.org/10.1134/S1063782616030039

N.V. Bondar, M.S. Brodin. Free and bound states of excitons in a percolation cluster of ZnSe quantum dots in a dielectric matrix. Low Temp. Phys. 37, 1026 (2011). https://doi.org/10.1063/1.3674196

N.V. Bondar, M.S. Brodyn, N.A. Matveevskaya, T.G. Beynik. Electronic excitation energy transfer in an array of CdS quantum dots on a quasi-two-dimensional surface. Semiconductors 53, 188 (2019). https://doi.org/10.1134/S1063782619020040

Опубліковано

2019-06-18

Як цитувати

Bondar, N. V., Brodyn, M. S., Tverdokhlibova, O. V., Matveevskaya, N. A., & Beynik, T. G. (2019). Вплив покриваючого ліганду на величину щілини та енергетичні рівні екситонів колоїдних розчинів та плівок квантових точок ZnSe. Український фізичний журнал, 64(5), 425. https://doi.org/10.15407/ujpe64.5.425

Номер

Розділ

Напівпровідники і діелектрики

Статті цього автора (авторів), які найбільше читають