Mathematical Interpretation of Experimental Research Results on Nonlinear Optical Material Properties

  • V. N. Starkov Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. S. Brodyn Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • P. M. Tomchuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Ya. Gayvoronsky Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. Yu. Boyarchuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: incorporated TiO2 nanoparticles, nonlinear optical material potassium dihydrogen phosphate, Fredholm integral equation, Landweber regularization method

Abstract

The problem of mathematical interpretation of experimental research results concerning the influence of incorporated TiO2 nanoparticles on the optical properties of the nonlinear optical material potassium dihydrogen phosphate has been formulated and solved, by using the computational physics methods. The mathematical model is reduced to a Fredholm integral equation of the first kind. A spline-iteration modification of the Landweber regularization method is suggested for solving the ill-posed problem. The results of computational experiments are compared with those of physical ones.

References

A.F. Verlan' and V.S. Sizikov, Integral Equations: Methods, Algorithms, Programs. Reference Textbook (Naukova Dumka, Kyiv, 1986) (in Russian).

V.V. Ivanov, Methods of Computer Calculations. A Handbook (Naukova Dumka, Kyiv, 1986) (in Russian).

V.Ya. Gayvoronsky, V.M. Starkov, M.A. Kopylovskyi, M.S. Brodyn, Ye.O. Vyshnyakov, O.Yu. Boyarchuk, and I.M. Prytula, Ukr. Fiz. Zh. 55, 875 (2010).

V.N. Starkov, Constructive Methods of Computational Physics in Interpretation Problems (Naukova Dumka, Kyiv, 2002) (in Russian).

V.N. Starkov and A.Yu. Boyarchuk, in Issues of Computation Optimization (V.M. Glushkov Institute of Cybernetics, Kyiv, 2009), Vol. 2, p. 339 (in Ukrainian).

A.N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999).

A.N. Tikhonov and V.Ya. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977).

V.V. Vasin and A.L. Ageev, Incorrect Problems with A Priori Information (Nauka, Ekaterinburg, 1993) (in Russian).

V.S. Sizikov, Inverse Application Problems and MatLab. A Handbook (Lan', Saint-Petersburg, 2011) (in Russian).

A.K. Lowes, Inverse und Schlecht Gestellte Probleme (Teubner, Stuttgart, 1989).

A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Kluwer, Dordrecht, 1994).

http://dx.doi.org/10.1007/978-94-011-1026-6

Encyclopedia of Mathematics, edited by I.M. Vinogradov (Moscow, Sovetskaya Entsyklopediya, 1977–1985) (in Russian), Vol. 5.

G.M. Vainikko and A.Yu. Veretennikov, Iteration Procedures in Ill-Posed Problems (Nauka, Moscow, 1986) (in Russian).

S.G. Solodkii, Dr. Sci. Phys. Mat. thesis (Institute of Mathematics, Kyiv, 2003).

V.A. Morozov, Regular Methods for Solving Ill-Posed Problems (Moscow Univ., Moscow, 1974) (in Russian).

A.V. Goncharskii, A.S. Leonov, and A.G. Yagola, Dokl. Akad. Nauk SSSR 203, 1238 (1972).

A.V. Goncharskii, A.S. Leonov, and A.G. Yagola, Zh. Vychisl. Mat. Mat. Fiz. 13, 294 (1973).

M. Defriese and C. De Mol, in Inverse Problems: An Interdisciplinary Study, edited by P.C. Sabatier (Academic Press, New York 1987), p. 261.

Published
2019-01-17
How to Cite
Starkov, V., Brodyn, M., Tomchuk, P., Gayvoronsky, V., & Boyarchuk, A. (2019). Mathematical Interpretation of Experimental Research Results on Nonlinear Optical Material Properties. Ukrainian Journal of Physics, 60(7), 601. https://doi.org/10.15407/ujpe60.07.0601
Section
Optics, lasers, and quantum electronics

Most read articles by the same author(s)

1 2 > >>