Cubic Optical Nonlinearity of Thin Fe2O3 and Cr2O3 Films Synthesized by Pulsed Laser Deposition

  • M. S. Brodyn Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • S. A. Mulenko G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • V. I. Rudenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. R. Liakhovetskyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. V. Volovyk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • N. Stefan National Institute for Laser, Plasma and Radiation Physics
Keywords: cubic optical nonlinearity, thin Fe2O3 and Cr2O3 films, laser sputtering method, femtosecond laser radiation

Abstract

The extinction spectra and the parameters of cubic optical nonlinearity in thin Fe2O3 and Cr2O3 films deposited on glass substrates with the use of the laser sputtering method have been measured. The cubic optical nonlinearity is studied, by using femtosecond laser radiation with the wavelength л = 800 nm and the pulse duration т = 180 fs. The energy gap width evaluated from the extinction spectra is found to equal Eg ≈ 2.4 eV and 2.2 eV for Fe2O3 films synthesized on the substrates at temperatures of 293 K and 800 K, respectively, and Eg ≈ 3 eV for Cr2O3 films deposited on the substrate heated up to 800 K. Rather high values are obtained for the coefficients of refractive nonlinearity: ReX(3) ∼ 10−6 esu for Fe2O3 films and ReX(3) ∼ 10−7 esu for Cr2O3 ones. The determined values of ImX(3) amounted to about 10−6 ÷10−7 esu for Fe2O3 films and about 10−8 esu for Cr2O3 ones. Probable mechanisms of refractive nonlinearity have been proposed.

References

H.S. Zhou, A. Mito, D. Kundu, and I. Honma, J. Sol-Gel Sci. Techn. 19, 539 (2000).

T. Hashimoto, T. Yoko, and S. Sakka, J. Ceram. Soc. Jpn. 101, 64 (1993). https://doi.org/10.2109/jcersj.101.64

T. Hashimoto, T. Yamada, and T. Yoko, J. Appl. Phys. 80, 3184 (1996). https://doi.org/10.1063/1.363258

B. Yu, C. Zhu, and F. Gan, Physica E 8, 360 (2000). https://doi.org/10.1016/S1386-9477(00)00152-1

G. Chatzikyriakos, K. Iliopoulos, A. Bakandritsos, and S. Couris, Chem. Phys. Lett. 493, 314 (2010). https://doi.org/10.1016/j.cplett.2010.05.048

S.A. Mulenko, M.S. Brodyn, and V.Ya. Gayvoronsky, Proc. SPIE 6161, 616107 (2006). https://doi.org/10.1117/12.675006

H. Jiang, R.I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. B 82, 045108 (2009). https://doi.org/10.1103/PhysRevB.82.045108

J.A. Crawford and R.W. Vest, J. Appl. Phys. 35, 2413 (1964). https://doi.org/10.1063/1.1702871

S. Sahoo and C. Binek, Phil. Mag. Lett. 87, 3 (2007). https://doi.org/10.1080/09500830701253177

Chun-Shen Cheng, H. Gomi, and H. Sakat, Phys. Status Solidi A 155, 417 (1996). https://doi.org/10.1002/pssa.2211550215

Z.T. Khodair, G.A. Kazem, and A.A. Habeeb, Iraqi J. Phys. 10, 17 (2012).

V.N. Muthukumar, R. Valent’?, and C. Gros, Phys. Rev. B 54, 433 (1996). https://doi.org/10.1103/PhysRevB.54.433

R.V. Pisarev, M. Fiebig, and D. Fr?ohlich, Ferroelectrics 204, 1 (1997). https://doi.org/10.1080/00150199708222184

L. Blaney, Lehigh Rev. 15, 5 (2007).

R. Shannon, R. Shannon, O. Medenbach, and R. Fischer, J. Phys. Chem. Ref. Data 31, 4 (2002). https://doi.org/10.1063/1.1497384

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Elect. 26, 760 (1990). https://doi.org/10.1109/3.53394

H.M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, New York, 1985).

A.A. Borshch, M.S. Brodin, and V.I. Volkov, Refractive Nonlinearity of Wide-Band Semiconductors and Applications (Harwood Academic Publ., Chur, 1990).

Published
2019-01-06
How to Cite
Brodyn, M., Mulenko, S., Rudenko, V., Liakhovetskyi, V., Volovyk, M., & Stefan, N. (2019). Cubic Optical Nonlinearity of Thin Fe2O3 and Cr2O3 Films Synthesized by Pulsed Laser Deposition. Ukrainian Journal of Physics, 61(6), 495. https://doi.org/10.15407/ujpe61.06.0495
Section
Optics, lasers, and quantum electronics