Transcutaneous Influence of Laser Radiation on the Oxygen Saturation of Venous Blood

Authors

  • O. Ostapenko V.G. Bar’yakhtar Institute of Magnetism, Nat. Acad. of Sci. of Ukraine https://orcid.org/0009-0002-3670-2955
  • O. Salyuk V.G. Bar’yakhtar Institute of Magnetism, Nat. Acad. of Sci. of Ukraine, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • D. Velyhotskyi V.G. Bar’yakhtar Institute of Magnetism, Nat. Acad. of Sci. of Ukraine, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” https://orcid.org/0000-0003-1261-9428
  • S. Mamilov V.G. Bar’yakhtar Institute of Magnetism, Nat. Acad. of Sci. of Ukraine https://orcid.org/0000-0002-0175-7019

DOI:

https://doi.org/10.15407/ujpe70.5.333

Keywords:

oxyhemoglobin, venous saturation, photodissociation, laser irradiation, arterial saturation

Abstract

The work is devoted to the determination of the external transcutaneous laser radiation effect on the relative concentration of oxyhemoglobin in venous blood. It is shown that transcutaneous laser irradiation of biological blood-filled tissue changes the venous blood oxygen saturation value only if a certain level of laser-stimulated photodissociation of oxyhemoglobin in arterial blood is reached (more than 6% decrease of the arterial blood oxygen saturation value). From our point of view, this process is not a direct laser-stimulated photodissociation of oxyhemoglobin in venous blood, because the dissociation curve is situated in the region with high values of partial oxygen pressure. The decrease in the relative concentration of oxyhemoglobin in venous blood is most likely related to compensatory mechanisms of hypoxia in peripheral tissues, accounting for the recombination of oxyhemoglobin molecules during their passage from the point of irradiation to the point of oxygen extraction by cells.

References

1. Q. Gibson, S. Ainsworth. Photosensitivity of hæm compounds. Nature 180, 1416 (1957).

https://doi.org/10.1038/1801416b0

2. V. Mansouri, B. Arjmand, M. Rezaei Tavirani, M. Razzaghi, M. Rostami-Nejad, M. Hamdieh. Evaluation of efficacy of low-level laser therapy. J. Lasers Med Sci. 11, 369 (2020).

https://doi.org/10.34172/jlms.2020.60

3. B. Arjmand, M. Khodadost, S. Jahani Sherafat, M. Rezaei Tavirani, N. Ahmadi, M. Hamzeloo Moghadam, F. Okhovatian, S. Rezaei Tavirani, M. Rostami-Nejad. Low-level laser therapy: Potential and complications. J. Lasers Med. Sci. 4, e42 (2021).

https://doi.org/10.34172/jlms.2021.42

4. M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of intensive care medicine. Intensiv Care Med. 40, 1795 (2014).

https://doi.org/10.1007/s00134-014-3525-z

5. C. Hartog, F. Bloos. Venous oxygen saturation. Best Practice & Research Clinical Anaesthesiology 28, 419 (2014).

https://doi.org/10.1016/j.bpa.2014.09.006

6. R.S. Loomba, J. Rausa, D. Sheikholeslami, A. Dyson, Farias, E.G. Villarreeal et al. Correlation of near-infrared spectroscopy oximetry and corresponding venous oxygen saturations in children with congenital heart disease. Pediatr Cardiol 43, 197 (2022).

https://doi.org/10.1007/s00246-021-02718-7

7. G. Khirfan, A. Almoushref, T. Naal, B. Abuhalimeh, R.A. Dweik, G.A. Heresi et al. Mixed venous oxygen saturation is a better prognosticator than cardiac index in pulmonary arterial hypertension. Chest. 158, 2546 (2020).

https://doi.org/10.1016/j.chest.2020.06.053

8. D. Altun, A. Do˘gan, A. Arnaz, A. Y¨uksek, Y.K. Yal¸cinba¸s, R. T¨urk¨oz et al. Noninvasive monitoring of central venous oxygen saturation by jugular transcutaneous near-infrared spectroscopy in pediatric patients undergoing congenital cardiac surgery. Turkish J. Medical Sci. 50 (5), 12 (2020).

https://doi.org/10.3906/sag-1911-135

9. S. Chetana Shanmukhappa, S. Lokeshwaran. Venous Oxygen Saturation (StatPearls Publishing, 2023).

10. S.S. Yesman, S.O. Mamilov, D.V. Veligotsky, A.I. Gisbrecht. Local changes in arterial oxygen saturation induced by visible and near infrared light radiation. Lasers in Med. Sci. 31, 145 (2016).

https://doi.org/10.1007/s10103-015-1838-y

11. M. Wolf, G. Duc, M. Keel, P. Niederer. Continuous noninvasive measurement of cerebral arterial and venous oxygen saturation at the bedside in mechanically ventilated neonates. Crit. Care Med. 9, 1579 (1997).

https://doi.org/10.1097/00003246-199709000-00028

12. R. Sudy, F. Petak, A. Schranc, S. Agocs, I. Blaskovics, C. Lengyel et al. Differences between central venous and cerebral tissue oxygen saturation in anaesthetised patients with diabetes mellitus. Sci. Rep. 9, 19740 (2019).

https://doi.org/10.1038/s41598-019-56221-4

13. M.A. Franceschini, A. Zourabian, J.B. Moore, A. Arora, S. Fantini, D.A. Boas. Local measurement of venous saturation in tissue with non-invasive, near-infrared respiratory-oximetry. Proc. SPIE. 4250, 164 (2001).

https://doi.org/10.1117/12.434535

14. S. Dech, F. Bittmann, L. Schaefer. Behavior of oxygen saturation and blood filling in the venous capillary system of the biceps brachii muscle during a fatiguing isometric action. Eur. J. Transl. Myol. 30, 8800 (2020).

https://doi.org/10.4081/ejtm.2019.8800

15. A. Svedmyr, M. Konrad, M. Wallin, M. Hallback, Lonnqvist, Karlsson. Non-invasive capnodynamic mixed venous oxygen saturation during major changes in oxygen delivery. J. Clin Monit Comput. 36, 1315 (2022).

https://doi.org/10.1007/s10877-021-00762-5

16. M. Iliukha, S. Mamilov, D. Velyhotskyi, I. Bekh, O. Strykun. Software and hardware implementation of current monitoring methods on changes in the health status of carbon monoxide poisoned. In: International Conference on e-Health and Bioengineering (EHB 2021) (IEEE, 2021), p. 151 [ISBN: 978-1-6654-4001-1].

https://doi.org/10.1109/EHB52898.2021.9657688

17. M.A. Franceschini, D.A. Boas, A. Zourabian, S.G. Diamond, S. Nadgir, D.W. Lin et al. Near-infrared spiroximetry: Noninvasive measurements of venous saturation in piglets and human subjects. J. Appl. Physiol. 92, 372 (2002).

https://doi.org/10.1152/jappl.2002.92.1.372

18. S.S. Yesman, S.A. Mamilov, M.M. Asimov, A.I. Gisbreht. Noninvasive methods of measuring oxygen saturation in venous blood. J. Appl. Spectroscopy 78, 406 (2011).

https://doi.org/10.1007/s10812-011-9473-2

19. K. Falahati, H. Tamura, I. Burghardt, M. Huix-Rotllant. Ultrafast carbon monoxide photolysis and heme spin-crossover in myoglobin via nonadiabatic quantum dynamics. Nature Communications 9, 4502 (2018).

https://doi.org/10.1038/s41467-018-06615-1

Published

2025-06-04

How to Cite

Ostapenko, O., Salyuk, O., Velyhotskyi, D., & Mamilov, S. (2025). Transcutaneous Influence of Laser Radiation on the Oxygen Saturation of Venous Blood. Ukrainian Journal of Physics, 70(5), 333. https://doi.org/10.15407/ujpe70.5.333

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics