Magnon Laser

  • P. Nowik-Boltyk Institute for Applied Physics and Center for Nanotechnology, University of M¨unster
  • I. V. Borisenko Institute for Applied Physics and Center for Nanotechnology, University of M¨unster, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
  • V. E. Demidov Institute for Applied Physics and Center for Nanotechnology, University of M¨unster
  • S. O. Demokritov Institute for Applied Physics and Center for Nanotechnology, University of M¨unster
Keywords: magnon laser, Bose–Einstein condensate of magnons, yttrium iron garnet

Abstract

We experimentally demonstrate a magnon laser based on the coherent Bose–Einstein condensate of magnons brought into motion by using a time-dependent spatially inhomogeneous magnetic field. We show that the application of a short field pulse results in the formation of a condensate cloud moving with the constant velocity of 930 m/s for the used parameters of the experiment. The number of magnons building the cloud is not changed during the propagation, which is reminiscent of the magnon superfluidity.

References

S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430 (2006). https://doi.org/10.1038/nature05117

T.H. Maiman. Stimulation optical radiation in a ruby. Nature 187, 493 (1960). https://doi.org/10.1038/187493a0

M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995). https://doi.org/10.1126/science.269.5221.198

H.M. Wiseman. Defining the (atom) laser. Phys. Rev. A 56, 2068 (1997). https://doi.org/10.1103/PhysRevA.56.2068

M. Holland, K. Burnett, C. Gardiner, J.I. Cirac, P. Zoller. Theory of an atom laser. Phys. Rev. A 54, R1757 (1996). https://doi.org/10.1103/PhysRevA.54.R1757

N.P. Robins, P.A. Altin, J.E. Debs, J.D. Close. Atom lasers: Production, properties and prospects for precision inertial measurement. Phys. Rep. 529, 265 (2013). https://doi.org/10.1016/j.physrep.2013.03.006

V.E. Demidov, O. Dzyapko, S.O. Demokritov, G.A. Melkov, A.N. Slavin. Thermalization of a parametrically driven magnon gas leading to Bose-Einstein condensation. Phys. Rev. Lett. 99, 037205 (2007). https://doi.org/10.1103/PhysRevLett.99.037205

S.M. Rezende. Theory of coherence in Bose-Einstein condensation phenomena in a microwave-driven interacting magnon gas. Phys. Rev. B 79, 174411 (2009). https://doi.org/10.1103/PhysRevB.79.174411

M.-O. Mewes, M.R. Andrews, D.M. Kurn, D.S. Durfee, C.G. Townsend, W. Ketterle. Output coupler for Bose-Einstein condensed atoms. Phys. Rev. Lett. 78, 582 (1997). https://doi.org/10.1103/PhysRevLett.78.582

Immanuel Bloch, Theodor W. H?ansch, Tilman Esslinger. Atom laser with a cw output coupler. Phys. Rev. Lett. 82, 3008 (1999). https://doi.org/10.1103/PhysRevLett.82.3008

S.O. Demokritov, V.E. Demidov.Micro-brillouin light scattering spectroscopy of magnetic nanostructures. IEEE Trans. Mag. 44, 6 (2008). https://doi.org/10.1109/TMAG.2007.910227

S.M. Rezende, F.R. Morgenthaler. Frequency conversion of spin waves in pulsed magnetic fields. Appl. Phys. Lett. 10, 184 (1967). https://doi.org/10.1063/1.1754903

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, R. Grimm. Bose-Einstein condensation of molecules. Science 302, 2101 (2003). https://doi.org/10.1126/science.1093280

J. Klaers, J. Schmitt, F. Vewinger, M. Weitz. Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545 (2010). https://doi.org/10.1038/nature09567

S. Christopoulos, G. Baldassarri H?oger von H?ogersthal, A.J.D.Grundy,P.G. Lagoudakis,A.V.Kavokin, J.J.Baumberg, G. Christmann, R. Butt?e, E. Feltin, J.-F. Carlin, N. Grandjean. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007). https://doi.org/10.1103/PhysRevLett.98.126405

P. Bhattacharya, B. Iao, Ayan Das, S. Bhowmick, J. Heo. Solid state electrically injected exciton-polariton laser. Phys. Rev. Lett. 110, 206403 (2013). https://doi.org/10.1103/PhysRevLett.110.206403

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szyman'ska, R. Andre', J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud and Le Si Dang. Bose-Einstein condensation of exciton polaritons. Nature 443, 409 (2006). https://doi.org/10.1038/nature05131

S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.N. Slavin. Quantum coherence due to Bose-Einstein condensation of parametrically driven magnons. New J. Phys. 10, 045029 (2008). https://doi.org/10.1088/1367-2630/10/4/045029

P. Nowik-Boltyk, O. Dzyapko, V.E. Demidov, N.G. Berloff, S.O. Demokritov. Spatially non-uniform ground state and quantized vortices in a two-component Bose-Einstein condensate of magnons. Nature Sci. Rep. 2, 482 (2012). https://doi.org/10.1038/srep00482

Published
2019-11-01
How to Cite
Nowik-Boltyk, P., Borisenko, I., Demidov, V., & Demokritov, S. (2019). Magnon Laser. Ukrainian Journal of Physics, 64(10), 938. https://doi.org/10.15407/ujpe64.10.938
Section
Physics of magnetic phenomena and physics of ferroics