Sensitivity of Multiplicity Fluctuations to Rapidity in High-Energy Nucleus-Nucleus Interactions

  • W. Bari Department of Physics, University of Kashmir
  • N. A. Rather Department of Mathematics, University of Kashmir
Keywords: multiplicity, scaled variance, fluctuations, correlations

Abstract

The multiplicity fluctuations in the relativistic charged particles produced in 28Si-nucleus interactions at two different energies are investigated in terms of a scaled variance. The main binning condition used in the present study is to expand the range of pseudorapidity along both sides of a central rapidity which is obtained from the rapidity distribution of each interaction considered. The dependence of the multiplicity fluctuations on the projectile energy and target size is investigated, and the results are compared with those obtained from the FRITIOF model.

References

U. Heinz. Towards the little bang standard model. J. Phys.: Conf. Ser. 455, 012044 (2013).

https://doi.org/10.1088/1742-6596/455/1/012044

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo. The QCD transition temperature: results with physical masses in the continuum limit. Phys. Lett. B 643, 46 (2006);

https://doi.org/10.1016/j.physletb.2006.10.021

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo. The QCD transition temperature: results with physical masses in the continuum limit. Phys. Lett. B 643, 46 (2006); Y. Aoki, Sz. Borsanyi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabo. The QCD transition temperature: results with physical masses in the continuum limit II. JHEP 0906, 088 (2009); S. Bors´anyi et al. Is there still any mystery in lattice QCD? Results with physical masses in the continuum limit III. JHEP 1009, 73 (2010).

S. Bors’anyi et al. Is there still any mystery in lattice QCD? Results with physical masses in the continuum limit III. JHEP 1009, 73 (2010).

https://doi.org/10.1007/JHEP09(2010)073

J. Adams et al. Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005);

https://doi.org/10.1016/j.nuclphysa.2005.03.085

K. Adcox et al. Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 757, 184 (2005).

https://doi.org/10.1016/j.nuclphysa.2005.03.086

K. Aamodt et al. [ALICE Collaboration]. Elliptic flow of charged particles in Pb-Pb collisions at = 2.76 TeV Phys. Rev. Lett. 105, 252302 (2010).

https://doi.org/10.1103/PhysRevLett.105.252302

B.V. Jacak, B. Muller. The exploration of hot nuclear matter. Science 337, 310 (2012).

https://doi.org/10.1126/science.1215901

R.J. Fries, V. Greco, P. Sorensen. Coalescence models for hadron formation from quark-gluon plasma. Ann. Rev. Nucl. Part. Sci. 58, 177 (2008).

https://doi.org/10.1146/annurev.nucl.58.110707.171134

L. Stodolsky. Temperature fluctuations in multiparticle production. Phys. Rev. Lett. 75, 1044 (1995).

https://doi.org/10.1103/PhysRevLett.75.1044

M.A. Stephanov, K. Rajagopal, E.V. Shuryak. Signatures of the tricritical point in QCD. Phys. Rev. Lett. 81, 4816 (1998).

https://doi.org/10.1103/PhysRevLett.81.4816

E.V. Shuryak. Event-by-event analysis of heavy ion collisions and thermodynamical fluctuations. Phys. Lett. B 423, 9 (1998).

https://doi.org/10.1016/S0370-2693(98)00127-0

N.R. Sahoo (for the STAR Collaboration). Recent results on event-by-event fluctuations from the RHIC Beam Energy Scan program in the STAR experiment. arXiv:1407.1554 [nucl-ex].

G. Wilk, Z. W lodarczyk. Consequences of temperature fluctuations in observables measured in high-energy collisions. Eur. Phys. Jour. A 48, 161 (2012).

https://doi.org/10.1140/epja/i2012-12161-y

S. Borsanyi et al. Fluctuations of conserved charges at finite temperature from lattice QCD. JHEP 1201, 138 (2012).

https://doi.org/10.1007/JHEP01(2012)138

S. Ejiri, F. Karsch, K. Redlich. Hadronic fluctuations at the QCD phase transition. Phys. Lett. B 633, 275 (2006).

https://doi.org/10.1016/j.physletb.2005.11.083

S. Gavin, G. Moschelli. Fluctuation probes of early-time correlations in nuclear collisions. Phys. Rev. C 85, 014905 (2012).

https://doi.org/10.1103/PhysRevC.85.014905

M.I. Adamovich et al. Multiplicities and rapidity densities in 200 GeV 16O interactions with emulsion nuclei. Phys. Lett. B 201, 397 (1988).

https://doi.org/10.1016/0370-2693(88)91162-8

L. Van Hove. Hadronization model for quark-gluon plasma in ultra-relativistic collisions. Z. Phys. C 27, 135 (1985);

https://doi.org/10.1007/BF01642492

M. Guylassy et al. Deflagrations and detonations as a mechanism of hadron bubble growth in supercooled quark-gluon plasmas. Nucl. Phys. B 237, 477 (1984).

https://doi.org/10.1016/0550-3213(84)90004-X

A. Bialas, R. Peschanski. Moments of rapidity distributions as a measure of short-range fluctuations in high-energy collisions. Nucl. Phys. B 273, 703 (1986);

https://doi.org/10.1016/0550-3213(86)90386-X

Intermittency in multiparticle production at high energy. Nucl. Phys. B 308, 857 (1988).

https://doi.org/10.1016/0550-3213(88)90131-9

R.C. Hwa, M.T. Nazirov. Intermittency in second-order phase transitions. Phys. Rev. Lett. 69, 741 (1992).

https://doi.org/10.1103/PhysRevLett.69.741

Z. Cao, R. Hwa. In search for signs of chaos in branching processes. Phys. Rev. Lett. 75, 1268 (1995);

https://doi.org/10.1103/PhysRevLett.75.1268

Chaotic behavior of particle production in branching processes. Phys. Rev. D 53, 6608 (1996);

https://doi.org/10.1103/PhysRevD.53.6608

Fluctuations and entropy indices of QCD parton showers. Phys. Rev. D 54, 6674 (1996).

https://doi.org/10.1103/PhysRevD.54.6674

R.C. Hwa, C.B. Yang. Local multiplicity fluctuations as a signature of critical hadronization in heavy-ion collisions at TeV energies. Phys. Rev. C 85, 044914 (2012).

https://doi.org/10.1103/PhysRevC.85.044914

B. Zhang, C.M. Ko, B.A. Li, Z.W. Lin. Multiphase transport model for relativistic nuclear collisions. Phys. Rev. C 61, 067901 (2000).

https://doi.org/10.1103/PhysRevC.61.067901

Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal. Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005).

https://doi.org/10.1103/PhysRevC.72.064901

W. Ochs. Multidimensional intermittency analysis. Z. Phys. C 50, 339 (1991).

https://doi.org/10.1007/BF01474088

M. Ga’zdzicki, M.I. Gorenstein, S. Mr’owczy’nski. Fluctuations and deconfinement phase transition in nucleus–nucleus collisions. Phys. Lett. B 585, 115 (2004)].

https://doi.org/10.1016/j.physletb.2004.01.077

M.A. Stephanov, K. Rajagopal, E.V. Shuryak. Event-byevent fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. D 60, 114028 (1999).

https://doi.org/10.1103/PhysRevD.60.114028

C. Alt et al. (NA49 Collaboration). Energy dependence of meson production in central Pb + Pb collisions at = 6 to 17 GeV. Phys. Rev. C 78, 044907 (2008).

https://doi.org/10.1103/PhysRevC.78.044907

M. Daugherity et al. (STAR Collaboration). J. Phys. G 35, 104090 (2008).

https://doi.org/10.1088/0954-3899/35/10/104090

C. Alt et al. (NA49 Collaboration). Energy dependence of particle ratio fluctuations in central Pb + Pb collisions from = 6.3 to 17.3 GeV. Phys. Rev. C 79, 044910 (2008).

https://doi.org/10.1103/PhysRevC.79.044910

D. Ghosh et al. Rapidity dependence of multiplicity fluctuations and correlations in high-energy nucleus–nucleus interactions. Pramana J. Phys. 77, 297 (2011).

https://doi.org/10.1007/s12043-011-0131-2

B. Andersson, G. Gustafson, B. Nilsson-Almqvist. A model for low- hadronic reactions with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl. Phys. B 281, 289 (1987);

https://doi.org/10.1016/0550-3213(87)90257-4

B. Nilsson-Almquist, E. Stenlund. Interactions between hadrons and nuclei: The Lund Monte-Carlo – FRITIOF version 1.6. Comp. Phys. Comm. 43, 387 (1987).

https://doi.org/10.1016/0010-4655(87)90056-7

A. Shakeel et al. Cluster production in 14.5 GeV/ Sinucleus collisions. Int. J. Mod. Phys. E 08, 121 (1999).

https://doi.org/10.1142/S0218301399000094

W. Bari et al. Intermittency in 4.5 and 14.5 GeV/ 28Sinucleus interactions. Int. J. Mod. Phys. E 11, 131 (2002).

https://doi.org/10.1142/S0218301302000740

C.F. Powell, P.H. Fowler, D.H. Perkins. The Study of Elementary Particles by the Photographic Method (Pergamon Press, 1959).

R.A. Fini (ALICE Collaboration). Multiplicity of charged particles in relativistic heavy-ion interactions. Nucl. Phys. A 749, 325 (2005).

https://doi.org/10.1016/j.nuclphysa.2004.12.061

B. Lungwitz (NA49 Collaboration). Energy, rapidity and transverse momentum dependence of multiplicity fluctuations in heavy ion collisions at CERN SPS. arXiv:0709.1646v2 [nucl-ex] (2007).

Published
2018-12-23
How to Cite
Bari, W., & Rather, N. (2018). Sensitivity of Multiplicity Fluctuations to Rapidity in High-Energy Nucleus-Nucleus Interactions. Ukrainian Journal of Physics, 62(1), 12. https://doi.org/10.15407/ujpe62.01.0012
Section
Nuclei and nuclear reactions