Fluctuations and Power Low Distribution Function in Nonequilibrium Systems

Authors

  • B. Lev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A. Zagorodny Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe69.8.519

Keywords:

Fokker–Planck equation, power law distribution function, fluctuations in statistical systems, Langevin equations

Abstract

The Fokker–Planck equation is formulated for the distribution functions of macroscopic open systems in the space of slowly changing physical variables (energy, adiabatic invariants, etc.). The stationary solution of such equations determines a quasi-equilibrium distribution function in the relevant space. The proposed approach involves the evolution of systems under the action of dissipation and diffusion in the space of the appropriate variables. It is shown that the well-known power law distribution can be obtained by considering internal and external fluctuations in statistical systems.

References

N.N. Bogoliubov. Problems of Dynamic Theory (Geophysics Research Directorate, AF Cambridge Research Laboratories, Air Force Research Division, United States Air Force, 1960).

R. Balescu. Equilibrium and Nonequilibrium Statistical Mechanics (J. Wiley and Sons, 1975) [ISBN: 978-0471046004].

Yu.L. Klimontovich. Kinetic Theory of Nonequilibrium Processes (Springer, 1982).

https://doi.org/10.1007/978-3-642-81822-6

D. Zubaryev. Nonequilibrium Statistical Thermodynamics (Nauka, 1971).

C.W. Gardiner, P. Zoller. Quantum Noise (Springer, 2000) [ISBN: 3-540-22301-0].

https://doi.org/10.1007/978-3-662-04103-1

D.F. Wells, G.J. Milburn. Quantum Optics (Springer, 1994) [ISBN-13: 978-3-540-58831-3].

https://doi.org/10.1007/978-3-642-79504-6

B.I. Lev, A.G. Zagorodny. Structure formation in system of Brownian particle in dusty plasma. Phys. Lett. A 376, 1101 (2009).

https://doi.org/10.1016/j.physleta.2009.01.044

B.I. Lev, A.G. Zagorodny. Statistical description of Coulomb-like systems. Phys. Rev. E 84, 061115 (2011).

https://doi.org/10.1103/PhysRevE.84.061115

B.I. Lev, V.B. Tymchyshyn, A.G. Zagorodny. Brownian particle in non-equilibrium plasma. Cond. Matt. Phys. 12 (4), 593 (2009).

https://doi.org/10.5488/CMP.12.4.593

V. Guerriero. Power law distribution: Method of multiscale inferential statistics. J. Mod. Math. Frontier 1 (1), 21 (2012).

Yu.L. Klimontovich. Nonlinear Brownian motion. Uspekhi Fizicheskikh Nauk 164 (8), 811 (1994).

https://doi.org/10.3367/UFNr.0164.199408b.0811

D. Huang. Statistical Mechanics (W.A. Benjamin, Inc., 1969).

L.D. Landau, E.M. Lifshitz. Statistical Physics (Elsevier, 2013).

W. Horsthemke, R. Lefever. Noise-Induced Transition: Theory, Applications in Physics, Chemistry and Biology (Springer-Verlag, 1984) [ISBN: 978-3540113591].

B.I. Lev, A.D. Kiselev. Energy representation for nonequilibrium Brownian-like systems: Steady states and fluctuation relations. Phys. Rev. E 82, 031101 (2010).

https://doi.org/10.1103/PhysRevE.82.031101

B.I. Lev. Brownian system in energy space: Nonequilibrium distribution function in energy representation. Eur. Phys. J. (Special Topics) 216, 37 (2013).

https://doi.org/10.1140/epjst/e2013-01727-1

A.J. Lichtenberg, M.A. Liberman. Regular and Stochastic Motion (Springer-Verlag, 1984).

https://doi.org/10.1007/978-1-4757-4257-2

N.G. van Kampen. Stohastic Process in Physics and Chemistry (North-Holland, 1990).

N.N. Bogoliubov. On stochastic processes in dynamic system. In: Physics of Elementary Particles and Nuclei (PEPAN) (JINR (Dubna), 1978), 9, No. 4.

Fugao Wang, D.P. Landau. Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E 64 (5), 056101 (2001).

https://doi.org/10.1103/PhysRevE.64.056101

J. Willard Gibbs. Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics (Cambridge University Press, 1902) [ISBN: 9780511686948].

Published

2024-09-18

How to Cite

Lev, B., & Zagorodny, A. (2024). Fluctuations and Power Low Distribution Function in Nonequilibrium Systems. Ukrainian Journal of Physics, 69(8), 519. https://doi.org/10.15407/ujpe69.8.519

Issue

Section

General physics

Most read articles by the same author(s)